Endoscope Reprocessing: The Need to Shift from HLD to Sterilization

William A. Rutala, Ph.D., M.P.H., C.I.C.
Director, Statewide Program for Infection Control and Epidemiology and Research Professor of Medicine, University of North Carolina at Chapel Hill, NC, USA
Former Director, Hospital Epidemiology, Occupational Health and Safety, UNC Hospitals, Chapel Hill, NC (1979-2017)
Consultations
- ASP (Advanced Sterilization Products), PDI

Honoraria
- PDI, ASP, 3M

Scientific Advisory Board
- Kinnos

Grants
- CDC
Our Responsibility to the Future

Prevent All Infectious Disease Transmission by Medical Devices in 5 years
Duodenoscopes and Endoscope Reprocessing: A Need to Shift from Disinfection to Sterilization

- Sources of healthcare-associated pathogens
- Evaluate the *cause* of endoscope-related outbreaks
- Review the *outbreaks* associated with ERCP and endoscopic procedures
- Discuss the alternatives that exist today that might improve the *safety margin* associated with duodenoscope/endoscope reprocessing
- Describe *how to prevent future outbreaks* associated with duodenoscopes and other endoscopes
www.disinfectionandsterilization.org
Semicritical Medical Devices
Rutala et al. AJIC 2016;44:e47

- **Semicritical**
 - Transmission: direct contact
 - Control measure: high-level disinfection
 - Endoscopes top ECRI list of 10 technology hazards, >130 outbreaks (GI, bronchoscopes)
 - 0 margin of safety
 - Microbial load, 10^7-10^{10}
 - Complexity
 - Biofilm
 - Other semicritical devices, rare outbreaks
 - ENT scopes, endocavitary probes (prostate, vaginal, TEE), laryngoscopes, cystoscopes
 - Reduced microbial load, less complex
Infections/Outbreaks Associated with Semicritical Medical Devices

<table>
<thead>
<tr>
<th>Medical Device</th>
<th>No. Outbreaks/Infections</th>
<th>No. Outbreaks/Infections with Bloodborne Pathogens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaginal Probes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ear-Nose-Throat Endoscopes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Urologic instruments (e.g. cystoscopes)</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Hysteroscopes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Laryngoscopes</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Transrectal ultrasound guided prostate</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Applanation tonometers</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>TEE-Transesophageal echocardiogram</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>GI Endoscopes/Bronchoscopes</td>
<td>~130</td>
<td>3 (HBV-1 GI; HCV-2 GI; HIV-0)</td>
</tr>
</tbody>
</table>
What are the risks associated with GI endoscopes and bronchoscopes?
Transmission of Infection by Endoscopy

<table>
<thead>
<tr>
<th>Scope</th>
<th>Outbreaks</th>
<th>Micro (primary)</th>
<th>Pts Contaminated</th>
<th>Pts Infected</th>
<th>Cause (primary)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper GI</td>
<td>19</td>
<td>Pa, H. pylori, Salmonella</td>
<td>169</td>
<td>56</td>
<td>Cleaning/Disinfection (C/D)</td>
</tr>
<tr>
<td>Sigmoid/Colonoscopy</td>
<td>5</td>
<td>Salmonella, HCV</td>
<td>14</td>
<td>6</td>
<td>Cleaning/Disinfection</td>
</tr>
<tr>
<td>ERCP</td>
<td>23</td>
<td>P. aeruginosa (Pa)</td>
<td>152</td>
<td>89</td>
<td>C/D, water bottle, AER</td>
</tr>
<tr>
<td>Bronchoscopy</td>
<td>51</td>
<td>Pa, Mtb, Mycobacteria</td>
<td>778</td>
<td>98</td>
<td>C/D, AER, water</td>
</tr>
<tr>
<td>Totals</td>
<td>98</td>
<td></td>
<td>1113</td>
<td>249</td>
<td></td>
</tr>
</tbody>
</table>

Based on outbreak data, if eliminated deficiencies associated with cleaning, disinfection, AER, contaminated water and drying would eliminate about 85% of the outbreaks.
In January 2015, after several outbreaks of serious infections, Senator Murray initiated an investigation to determine the extent of duodenoscope-linked infections.

Between 2012 and spring 2015, closed-channel duodenoscopes were linked to at least 25 different incidents of antibiotic-resistant infections that sickened at least 250 patients worldwide.

None of the manufacturers of the “closed-channel” duodenoscopes had sufficient data to show that duodenoscopes could be cleaned reliably between uses.
RECENT ENDOSCOPY-RELATED OUTBREAKS OF MRDO WITHOUT REPROCESSING BREACHES

Rutala WA et al. AJIC. 2019;47:A79-A89

<table>
<thead>
<tr>
<th>MDRO</th>
<th>Scope</th>
<th>No.</th>
<th>Recovered From Scope</th>
<th>Molecular Link</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. aeruginosa (VIM-2)</td>
<td>Duodenoscope</td>
<td>22</td>
<td>Yes, under forceps elevator</td>
<td>Yes</td>
<td>Verfaillie CJ, 2015</td>
</tr>
<tr>
<td>E. coli (AmpC)</td>
<td>Duodenoscope</td>
<td>35</td>
<td>Yes (2 scopes)</td>
<td>Yes</td>
<td>Wendorf, 2015</td>
</tr>
<tr>
<td>K. pneumoniae (OXA)</td>
<td>Duodenoscope</td>
<td>12</td>
<td>No</td>
<td>Yes</td>
<td>Kola A, 2015</td>
</tr>
<tr>
<td>E. coli (NDM-CRE)</td>
<td>Duodenoscope</td>
<td>39</td>
<td>Yes</td>
<td>Yes</td>
<td>Epstein L, 2015</td>
</tr>
<tr>
<td>K. pneumoniae</td>
<td>Duodenoscope</td>
<td>15</td>
<td>No</td>
<td>Yes</td>
<td>Kim S, 2016</td>
</tr>
<tr>
<td>K. pneumoniae</td>
<td>Duodenoscope</td>
<td>34</td>
<td>Yes</td>
<td>Yes</td>
<td>Marsh J, 2015</td>
</tr>
<tr>
<td>E. coli</td>
<td>Duodenoscope</td>
<td>3</td>
<td>No</td>
<td>Unknown</td>
<td>Smith Z, 2015</td>
</tr>
<tr>
<td>K. pneumoniae</td>
<td>Duodenoscope</td>
<td>13</td>
<td>Yes</td>
<td>Yes</td>
<td>Carbonne A, 2010</td>
</tr>
</tbody>
</table>
Carbapenem-Resistant *Enterobacteriaceae* (CRE) and Multidrug Resistant Organisms (MDRO)

- *Klebsiella, Enterobacter* and *E. coli* are examples of *Enteriobacteriaceae*, a normal part of enteric microbes, that have become resistant to carbapenem.
- Healthy people usually do not generally get CRE infections.
- Infections with CRE and MDROs are very difficult to treat and can be deadly.
- Likely that MDR pathogens are acting as a “marker” or ‘indicator” organism for ineffective reprocessing of duodenoscopes.
Evidence-Based Recommendation for Sterilization of Endoscopes

(FDA Panel Recommendation for Duodenoscopes, May 2015; more peer-reviewed publications (>150) for the need for shifting from disinfection to sterilization than any other recommendation of AAMI, CDC [HICPAC], SHEA, APIC, SGNA, ASGE)

>130 plus endoscope-related outbreaks
GI endoscope contamination rates of 20-40% after HLD
Scope commonly have disruptive/irregular surfaces
>50,000 patient exposures involving HLD
Reason for Endoscope-Related Outbreaks

- Margin of safety with endoscope reprocessing minimal or non-existent
- Microbial load
 - GI endoscopes contain 10^7-10
 - Cleaning results in 2-6 log$_{10}$ reduction
 - High-level disinfection results in 4-6 log$_{10}$ reduction
 - Results in a total 6-12 log$_{10}$ reduction of microbes
 - Level of contamination after processing: 4 log$_{10}$ (maximum contamination, minimal cleaning/HLD)
- Complexity of endoscope and endoscope reprocessing
- Biofilms-may contribute to failure of endoscope reprocessing
NDM-producing E. coli recovered from elevator channel (elevator channel orients catheters, guide wires and accessories into the endoscope visual field; crevices difficult to access with cleaning brush and may impede effective reprocessing). Very high microbial load 10^7-10^8.
Mowat AM, Agace WW. Nat Rev Immunology 2014;14:667-685
Reason for Endoscope-Related Outbreaks

- Margin of safety with endoscope reprocessing minimal or non-existent
- Microbial load
 - GI endoscopes contain 10^{7-10}
 - Cleaning results in 2-6 log_{10} reduction
 - High-level disinfection results in 4-6 log_{10} reduction
 - Results in a total 6-12 log_{10} reduction of microbes
 - Level of contamination after processing: 4 log_{10} (maximum contamination, minimal cleaning/HLD)
- Complexity of endoscope and endoscope reprocessing
- Biofilms—may contribute to failure of endoscope reprocessing
Reason for Endoscope-Related Outbreaks

- Margin of safety with endoscope reprocessing minimal or non-existent
- Microbial load
 - GI endoscopes contain 10^7-10^{10}
 - Cleaning results in 2-6 \log_{10} reduction
 - High-level disinfection results in 4-6 \log_{10} reduction
 - Results in a total 6-12 \log_{10} reduction of microbes
 - Level of contamination after processing: $4\log_{10}$ (maximum contamination, minimal cleaning/HLD)
- Complexity of endoscope and endoscope reprocessing
- Biofilms-may contribute to failure of endoscope reprocessing
High-Level Disinfection
No Margin of Safety

0 margin of safety

Microbial contamination 10^7-10^{10}: compliant with reprocessing guidelines
10,000 microbes after reprocessing:
maximum contamination, minimal cleaning (10^2/HLD 10^4)
Reason for Endoscope-Related Outbreaks

- Margin of safety with endoscope reprocessing minimal or non-existent
- Microbial load
 - GI endoscopes contain 10^{7-10}
 - Cleaning results in 2-6 log$_{10}$ reduction
 - High-level disinfection results in 4-6 log$_{10}$ reduction
 - Results in a total 6-12 log$_{10}$ reduction of microbes
 - Level of contamination after processing: 4log$_{10}$ (maximum contamination, minimal cleaning/HLD)
- Complexity of endoscope and endoscope reprocessing
- Biofilms-may contribute to failure of endoscope reprocessing
FEATURES OF ENDOSCOPES THAT PREDISPOSE TO DISINFECTION FAILURES

- Heat labile
- Long, narrow lumens (3.5ft, 1-3mm)
- Right angle bends
- Rough or pitted surfaces
- Springs and valves
- Damaged channels may impede microbial exposure to HLD
- Heavily contaminated with pathogens, 10^7-10^{10}
- Cleaning (2-6 \log_{10} reduction) and HLD (4-6 \log_{10} reduction) essential for patient safe instrument
Multisociety guideline on reprocessing flexible GI endoscopes: 2016 update

Prepared by: REPROCESSING GUIDELINE TASK FORCE
Bret T. Petersen, MD, FASGE, Chair, Jonathan Cohen, MD, FASGE, Ralph David Hambrick, III, RN, Navtej Buttar, MD, David A. Grencwald, MD, FASGE, Jonathan M. Buscaglia, MD, FASGE, James Collins, RN, Glenn Eisen, MD, MPH, FASGE

This article was reviewed and approved by the Governing Board of the American Society for Gastrointestinal Endoscopy (ASGE).
TABLE 3. Documented Completion of Steps During Manual Cleaning With High-Level Disinfection Reprocessing

<table>
<thead>
<tr>
<th>Observed Activity</th>
<th>Steps Completed (%) (n = 69)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leak test performed in clear water</td>
<td>77</td>
</tr>
<tr>
<td>Disassemble endoscope completely</td>
<td>100</td>
</tr>
<tr>
<td>Brush all endoscope channels and components</td>
<td>43</td>
</tr>
<tr>
<td>Immerse endoscope completely in detergent</td>
<td>99</td>
</tr>
<tr>
<td>Immerse components completely in detergent</td>
<td>99</td>
</tr>
<tr>
<td>Flush endoscope with detergent</td>
<td>99</td>
</tr>
<tr>
<td>Rinse endoscope with water</td>
<td>96</td>
</tr>
<tr>
<td>Purge endoscope with air</td>
<td>84</td>
</tr>
<tr>
<td>Load and complete automated cycle for high-level disinfection</td>
<td>100</td>
</tr>
<tr>
<td>Flush endoscope with alcohol</td>
<td>86</td>
</tr>
<tr>
<td>Use forced air to dry endoscope</td>
<td>45</td>
</tr>
<tr>
<td>Wipe down external surfaces before hanging to dry</td>
<td>90</td>
</tr>
</tbody>
</table>

Performed all 12 steps with only 1.4% of endoscopes using manual versus 75.4% of those processed using AER.
Automated Endoscopy Reprocessors

AERs automate and standardize endoscopy reprocessing steps
Microbial Surveillance of GI Endoscopes

<table>
<thead>
<tr>
<th>Characteristics of Sample</th>
<th>Action Level (TCU>100/scope) or EIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastroscope</td>
<td>26.6%</td>
</tr>
<tr>
<td>Colonoscope</td>
<td>33.7%</td>
</tr>
<tr>
<td>Duodenoscope</td>
<td>34.7%</td>
</tr>
<tr>
<td>Echo-endoscope</td>
<td>31.9%</td>
</tr>
<tr>
<td>AER</td>
<td>27.2%</td>
</tr>
<tr>
<td>Manual</td>
<td>39.3%</td>
</tr>
<tr>
<td>Age of endoscope <2 years</td>
<td>18.9%</td>
</tr>
<tr>
<td>Age of endoscope >2 years</td>
<td>38.8%</td>
</tr>
</tbody>
</table>
Visual Inspection of GI Endoscopes and Bronchoscopes

- All endoscopes (n=20) had visible irregularities (e.g., scratches)
- Researchers observed fluid (95%), discoloration, and debris in channels
- 60% scopes with microbial contamination

Bronchoscopes, Ofstead et al. Chest. 2018

- Visible irregularities were observed in 100% (e.g., retained fluid, scratches, damaged insertion tubes)
- Microbial contamination in 58%
- Reprocessing practices deficient at 2 of 3 sites
Reason for Endoscope-Related Outbreaks

- Margin of safety with endoscope reprocessing minimal or non-existent

- Microbial load
 - GI endoscopes contain 10^7-10^{10}
 - Cleaning results in 2-6 log$_{10}$ reduction
 - High-level disinfection results in 4-6 log$_{10}$ reduction
 - Results in a total 6-12 log$_{10}$ reduction of microbes
 - Level of contamination after processing: 4log$_{10}$ (maximum contamination, minimal cleaning/HLD)

- Complexity of endoscope and endoscope reprocessing

- Biofilms—may contribute to failure of endoscope reprocessing
Three types of biofilm

- Traditional hydrated biofilm (water content 90%)
- Build-up biofilm—occurs in endoscope channels
- Dry surface biofilm-heterogenous accumulation of organisms and other material in a dry matrix (water content 61%)

 Raises questions about the inactivation of microbes with a dry surface biofilm by currently used cleaning/disinfecting methods
If the margin of safety is so small that perfection is required, then the design is too complex and the process is too unforgiving to be practical in a real-world setting.
What Should We Do Now?

Interim Response to ERCP Outbreaks
How Can We Prevent ERCP-Related Infections?

- No single, simple and proven technology or prevention strategy that hospitals can use to guarantee patient safety
- Of course, must continue to emphasize the enforcement of evidenced-based practices, including equipment maintenance and routine audits with at least yearly competency testing of reprocessing staff
- Must do more or additional outbreaks will continue
ENDOSCOPE REPROCESSING

CDC 2008: Multi-Society Guideline on Endoscope Reprocessing, 2017

- PRECLEAN-point-of-use (bedside) remove debris by wiping exterior and aspiration of detergent through air/water and biopsy channels; leak test
- CLEAN-mechanically cleaned with water and enzymatic cleaner
- HLD/STERILIZE-immerse scope and perfuse HLD/sterilant through all channels for exposure time (>2% glut at 20m at 20°C). If AER used, review model-specific reprocessing protocols from both the endoscope and AER manufacturer
- RINSE-scope and channels rinsed with sterile water, filtered water, or tap water. Flush channels with alcohol and dry
- DRY-use forced air to dry insertion tube and channels
- STORE-hang in vertical position to facilitate drying; stored in a manner to protect from contamination
Education/Training/Competency/Compliance

Judie Bringhurst
Gastrointestinal Endoscopes
A Need to Shift From Disinfection to Sterilization?

William A. Rutala, PhD, MPH; David J. Weber, MD, MPH

More than 10 million gastrointestinal endoscopic procedures are performed annually in the United States for diagnostic purposes, therapeutic interventions, or both. Because gastrointestinal endoscopes contact mucosal surfaces, use of a contaminated endoscope may lead to patient-to-patient transmission of potential pathogens with a subsequent risk of infection.

In this issue of JAMA, Epstein and colleagues’ report findings from their investigation of a cluster of New Delhi metallo-β-lactamase (NDM)–producing Escherichia coli associated with gastrointestinal endoscopy that occurred from March 2013 to July 2013 in a single hospital in northeastern Illinois. During the 5-month period, 9 pa-

First, endoscopes are semicritical devices, which contact mucous membranes or nonintact skin, and require at least high-level disinfection. High-level disinfection achieves complete elimination of all microorganisms, except for small numbers of bacterial spores. Because flexible gastrointestinal endoscopic instruments are heat labile, only high-level disinfection with chemical agents or low-temperature sterilization technologies are possible. However, no low-temperature sterilization technology is US Food and Drug Administration (FDA)-cleared for gastrointestinal endoscopes such as duodenoscopes.

Second, more health care–associated outbreaks and clusters of infection have been linked to contaminated endoscopes than to any other medical device. However, until now,
What Is the Public Health Benefit?
No ERCP-Related Infections

Margin of Safety—currently nonexistent; sterilization will provide a safety margin (~6 log_{10}). To prevent infections, all duodenoscopes should be devoid of microbial contamination.

HLD (6 log_{10} reduction)

vs

Sterilization (12 log_{10} reduction=SAL 10^{-6})
FDA Panel, May 2015, Recommended Sterilization of Duodenoscopes (requires FDA-cleared sterilization technology that achieves a SAL 10^{-6}, technology not yet available)
Where are we?
Potential Future Methods to Prevent Endoscope-Related Outbreaks

- Optimize current low temperature sterilization methods or new LTST proving SAL 10^{-6} achieved (2 LTS technologies, FDA-cleared)
- Disposable sterile GI endoscopes/bronchoscopes (3 manufacturers)
- Steam sterilization for GI endoscopes (1 bronchoscope manufacturer)
- Use of non-endoscope methods to diagnosis or treat disease (e.g., capsule endoscopy, stool or blood tests to detect GI cancer, stool DNA test)
Potential Future Methods to Prevent Endoscope-Related Outbreaks

- Improved GI endoscope design (to reduce or eliminate reprocessing challenges—based on 50y of experience unlikely to resolve problem; closed channel duodenoscopes increased risk)
 - FDA recommends disposable end caps to reduce risk of infection associated with duodenoscopes. FDA cleared two duodenoscopes with disposable endcaps (Pentax and Fuji). August 2019
Endoscope Reprocessing:
What Can We Do To Prevent Infections?

Summary

- Endoscopes represent a significant nosocomial hazard for healthcare-associated infections. Narrow or nonexistent margin of safety associated with high-level disinfection of semicritical items due to microbial load, complexity in design and formation of biofilms.
- To protect the public health and prevent endoscopy-related (e.g., ERCP, bronchoscopes) outbreaks, there is an urgent need to shift from HLD to sterilization.
- Professional organizations should clarify the Spaulding classification to require sterilization of endoscopes that directly or indirectly (duodenoscope, cystoscope) enter normally sterile tissue.
- Industry must develop sterilization technology (or single use) and make endoscopes compatible.
- FDA must support this change through mandates and regulatory guidance.
- TJC/CMS must enforce this transition when technology is acceptable.
- Professional organizations (APIC, SHEA, ASGE, SGNA, AORN, IAHCSMM, AUA, ATS) must facilitate this change (e.g., guidelines, research, user education, presentations at meetings).
- Only after transition from HLD to sterilization for endoscopes that contact sterile tissue will we prevent all healthcare-associated infections associated with these medical devices.
Duodenoscopes and Endoscope Reprocessing:
A Need to Shift from Disinfection to Sterilization

- Sources of healthcare-associated pathogens
- Evaluate the cause of endoscope-related outbreaks
- Review the outbreaks associated with ERCP and endoscopic procedures
- Discuss the alternatives that exist today that might improve the safety margin associated with duodenoscope/endoscope reprocessing
- Describe how to prevent future outbreaks associated with duodenoscopes and other endoscopes
THANK YOU!

www.disinfectionandsterilization.org