Disinfection and Sterilization
Current Issues, New Research and New Technology

William A. Rutala, Ph.D., M.P.H., C.I.C
Director, Statewide Program for Infection Control and Epidemiology
and Professor of Medicine, University of North Carolina at Chapel Hill, NC, USA
Former Director, Hospital Epidemiology, Occupational Health and Safety, UNC Health Care, Chapel Hill, NC (1979-2017)
DISCLOSURES 2018

- Consultations
 - ASP (Advanced Sterilization Products), PDI
- Honoraria
 - PDI, ASP, 3M
- Scientific Advisory Board
 - Kinnos
- Grants
 - CDC, CMS
Current Issues, New Research and New Technologies

- Sterilization of critical items
 - Biological indicators, clarified Spaulding
- High-level disinfection for semi-critical items
 - Outbreaks with semicritical devices, endoscope reprocessing issues (duodenoscopes-lever position), channeled endoscopes, HPV risks/studies, ultrasound probes
- Low-level disinfection of non-critical items
 - Noncritical surface disinfection bundle, “wet” time, biofilms, continuously active disinfectant, colored disinfectant, sporicide for all discharges
- Emerging Pathogens
 - Inactivation data- *Candida auris*, CRE-carbapenem-resistant *Enterobacteriaceae*
Sources of Healthcare-Associated Pathogens

• Endogenous flora (SSI, UTI, CLABSI): 40-60%
• Exogenous: 20-40% (e.g., cross-infection via contaminated hands [staff, visitors])
• Other (environment): 20%
 ■ Medical devices
 ■ Contact with environmental surfaces (direct and indirect contact)
Goal

Prevent All Infectious Disease Transmission Associated with Medical/Surgical Devices in 5 years
EH Spaulding believed that how an object will be disinfected depended on the object’s intended use (developed 1968).

CRITICAL-medical/surgical devices which enter normally sterile tissue or the vascular system or through which blood flows should be **sterile**.

SEMICRITICAL-medical devices that touch mucous membranes or skin that is not intact require a disinfection process (**high-level disinfection** [HLD]) that kills all microorganisms but high numbers of bacterial spores.

NONCRITICAL-medical devices that touch only intact skin require **low-level disinfection**.
Critical Medical/Surgical Devices

Rutala et al. ICHE 2014;35:883; Rutala et al. ICHE 2014;35:1068; Rutala et al. AJIC 2016;44:e47

- Critical
 - Contact: sterile tissue
 - Transmission: direct contact
 - Control measure: sterilization
- Surgical instruments
 - Enormous margin of safety, rare outbreaks
 - ~85% of surgical instruments <100 microbes
 - Washer/disinfector removes or inactivates 10-100 million
 - Sterilization kills 1 trillion spores
• Current Issues, New Research and New Technologies
 ■ Sterilization of critical items
 ◆ Biological indicators, clarified Spaulding
 ■ High-level disinfection for semi-critical items
 ◆ Outbreaks with semicritical devices, endoscope reprocessing issues (duodenoscopes-lever position), channeled endoscopes, HPV risks/studies, ultrasound probes
 ■ Low-level disinfection of non-critical items
 ◆ Noncritical surface disinfection bundle, “wet” time, biofilms, continuously active disinfectant, colored disinfectant, sporicide for all discharges
 ■ Emerging Pathogens
 ◆ Inactivation data- *Candida auris*, CRE-carbapenem-resistant *Enterobacteriaceae*
Disinfection and Sterilization
Current Issues, New Research and New Technologies

- 24m and 30m BI for HP sterilizers
- Shift from HLD to sterilization dependent on technology
- Most infections associated with endoscopes
- Perfuse channeled scopes
- Ultrasound probe reprocessing
- Uncertain if OPA/glut kill HPV
- Develop a noncritical surface bundle including “no touch”
- “Wet” time, disinfectant kill time
- Touchable surfaces should be wiped and monitor cleaning
- Sporicide in all discharge rooms
- Biofilms
- CRE susceptible to germicides
- *C. auris* susceptible to most disinfectants but not antiseptics
Biological Indicators

- Select BIs that contain spores of *B. atrophaeus* or *Geobacillus sterothermophilus*

- **Rationale:** BIs are the only sterilization process monitoring device that **provides a direct measure of the lethality of the process**

Bacillus atrophaeus
30m or 24m Biological Indicator for HP Sterilizers
Disinfection and Sterilization
Current Issues, New Research and New Technologies

- 24m and 30m BI for HP sterilizers
- Shift from HLD to sterilization dependent on technology
- Most infections associated with endoscopes
- Perfuse channeled scopes
- Ultrasound probe reprocessing
- Uncertain if OPA/glut kill HPV

- Develop a noncritical surface bundle including “no touch”
- “Wet” time, disinfectant kill time
- Touchable surfaces should be wiped and monitor cleaning
- Sporicide in all discharge rooms
- Biofilms
- CRE susceptible to germicides
- C. auris susceptible to most disinfectants but not antiseptics
GI Endoscopes:
Shift from Disinfection to Sterilization

Gastrointestinal Endoscopes
A Need to Shift From Disinfection to Sterilization?

William A. Rutala, PhD, MPH; David J. Weber, MD, MPH

More than 10 million gastrointestinal endoscopic procedures are performed annually in the United States for diagnostic purposes, therapeutic interventions, or both. Because gastrointestinal endoscopes contact mucosal surfaces, use of a contaminated endoscope may lead to patient-to-patient transmission of potential pathogens with a subsequent risk of infection.

In this issue of JAMA, Epstein and colleagues’ report findings from their investigation of a cluster of New Delhi metallo-β-lactamase (NDM)-producing Escherichia coli associated with gastrointestinal endoscopy that occurred from March 2013 to July 2013 in a single hospital in northeastern Illinois. During the 5-month period, 9 pa-

First, endoscopes are semicritical devices, which contact mucous membranes or nonintact skin, and require at least high-level disinfection. High-level disinfection achieves complete elimination of all microorganisms, except for small numbers of bacterial spores. Because flexible gastrointestinal endoscopic instruments are heat labile, only high-level disinfection with chemical agents or low-temperature sterilization technologies are possible. However, no low-temperature sterilization technology is US Food and Drug Administration (FDA)—cleared for gastrointestinal endoscopes such as duodenoscopes.

Second, more health care–associated outbreaks and clusters of infection have been linked to contaminated endoscopes than to any other medical device. However, until now,
Evidence-Based Recommendation for Sterilization of Endoscopes

(FDA Panel Recommendation for Duodenoscopes, May 2015; more peer-reviewed publications (>150) for the need for shifting from disinfection to sterilization than any other recommendation of AAMI, CDC [HICPAC], SHEA, APIC, SGNA, ASGE)

>130 plus endoscope-related outbreaks
GI endoscope contamination rates of 20-40% after HLD
Scope commonly have disruptive/irregular surfaces
>50,000 patient exposures involving HLD
EH Spaulding believed that how an object will be disinfected depended on the object’s intended use (developed 1968).

CRITICAL - objects which enter normally sterile tissue or the vascular system or through which blood flows should be sterile.

SEMICRITICAL - objects that touch mucous membranes or skin that is not intact require a disinfection process (high-level disinfection [HLD]) that kills all microorganisms but high numbers of bacterial spores.

NONCRITICAL - objects that touch only intact skin require low-level disinfection (or non-germicidal detergent).
EH Spaulding believed that how an object will be disinfected depended on the object’s intended use (proposed clarification).

CRITICAL - objects which directly or indirectly/secondarily (i.e., via a mucous membrane such as duodenoscope, cystoscope, bronchoscope) enter normally sterile tissue or the vascular system or through which blood flows should be sterile.

SEMICRITICAL - objects that touch mucous membranes or skin that is not intact require a disinfection process (high-level disinfection [HLD]) that kills all microorganisms but high numbers of bacterial spores.

NONCRITICAL - objects that touch only intact skin require low-level disinfection (or non-germicidal detergent).
Reason for Endoscope-Related Outbreaks

- Margin of safety with endoscope reprocessing minimal or non-existent
- Microbial load
 - GI endoscopes contain 10^7-10
 - Cleaning results in 2-6 \log_{10} reduction
 - High-level disinfection results in 4-6 \log_{10} reduction
 - Results in a total 6-12 \log_{10} reduction of microbes
 - Level of contamination after processing: $4\log_{10}$ (maximum contamination, minimal cleaning/HLD)
- Complexity of endoscope and endoscope reprocessing
- Biofilms—could contribute to failure of endoscope reprocessing
Microbial Surveillance of GI Endoscopes

<table>
<thead>
<tr>
<th>Characteristics of Sample</th>
<th>Action Level (TCU>100/scope) or EIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastroscope</td>
<td>26.6%</td>
</tr>
<tr>
<td>Colonoscope</td>
<td>33.7%</td>
</tr>
<tr>
<td>Duodenoscope</td>
<td>34.7%</td>
</tr>
<tr>
<td>Echo-endoscope</td>
<td>31.9%</td>
</tr>
<tr>
<td>AER</td>
<td>27.2%</td>
</tr>
<tr>
<td>Manual</td>
<td>39.3%</td>
</tr>
<tr>
<td>Age of endoscope <2 years</td>
<td>18.9%</td>
</tr>
<tr>
<td>Age of endoscope >2 years</td>
<td>38.8%</td>
</tr>
</tbody>
</table>
Visual Inspection of GI Endoscopes and Bronchoscopes

- All endoscopes (n=20) had visible irregularities (e.g., scratches)
- Researchers observed fluid (95%), discoloration, and debris in channels
- 60% scopes with microbial contamination

Bronchoscopes, Ofstead et al. Chest. 2018
- Visible irregularities were observed in 100% (e.g., retained fluid, scratches, damaged insertion tubes)
- Microbial contamination in 58%
- Reprocessing practices deficient at 2 of 3 sites
Where are we?
Potential Future Methods to Prevent Endoscope-Related Outbreaks

- Optimize current low temperature sterilization methods or new LTST proving SAL 10^{-6} achieved (2 LTS technologies, FDA-cleared)
- Disposable sterile GI endoscopes/bronchoscopes (3 manufacturers)
- Steam sterilization for GI endoscopes (1 bronchoscope manufacturer)
- Use of non-endoscope methods to diagnosis or treat disease (e.g., capsule endoscopy, stool or blood tests to detect GI cancer, stool DNA test)
- Improved GI endoscope design (to reduce or eliminate reprocessing challenges-based on 50y of experience unlikely to resolve problem; closed channel duodenoscopes increased risk)
Current Issues, New Research and New Technologies

- Sterilization of critical items
 - Biological indicators, clarified Spaulding
- High-level disinfection for semi-critical items
 - Outbreaks with semicritical devices, endoscope reprocessing issues (duodenoscopes-lever position), channeled endoscopes, HPV risks/studies, ultrasound probes
- Low-level disinfection of non-critical items
 - Noncritical surface disinfection bundle, “wet” time, biofilms, continuously active disinfectant, colored disinfectant, sporicide for all discharges
- Emerging Pathogens
 - Inactivation data—Candida auris, CRE-carbapenem-resistant Enterobacteriaceae
Semicritical Medical Devices

Rutala et al. AJIC 2016;44:e47

• Semicritical
 • Transmission: direct contact
 • Control measure: high-level disinfection
 • Endoscopes top ECRI list of 10 technology hazards, >130 outbreaks (GI, bronchoscopes)
 • 0 margin of safety
 • Microbial load, 10^7-10^{10}
 • Complexity
 • Biofilm
 • Other semicritical devices, rare outbreaks
 • ENT scopes, endocavitary probes (prostate, vaginal, TEE), laryngoscopes, cystoscopes
 • Reduced microbial load, less complex
High-Level Disinfection of “Semicritical Objects”

Exposure Time > 8m-45m (US), 20°C

<table>
<thead>
<tr>
<th>Germicide</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glutaraldehyde</td>
<td>> 2.0%</td>
</tr>
<tr>
<td>Ortho-phthalaldehyde</td>
<td>0.55%</td>
</tr>
<tr>
<td>Hydrogen peroxide*</td>
<td>7.5%</td>
</tr>
<tr>
<td>Hydrogen peroxide and peracetic acid*</td>
<td>1.0%/0.08%</td>
</tr>
<tr>
<td>Hydrogen peroxide and peracetic acid*</td>
<td>7.5%/0.23%</td>
</tr>
<tr>
<td>Hypochlorite (free chlorine)*</td>
<td>650-675 ppm</td>
</tr>
<tr>
<td>Accelerated hydrogen peroxide</td>
<td>2.0%</td>
</tr>
<tr>
<td>Peracetic acid</td>
<td>0.2%</td>
</tr>
<tr>
<td>Glut and isopropanol</td>
<td>3.4%/26%</td>
</tr>
<tr>
<td>Glut and phenol/phenate**</td>
<td>1.21%/1.93%</td>
</tr>
</tbody>
</table>

*May cause cosmetic and functional damage; **efficacy not verified.
Microbiological Disinfectant Hierarchy

Rutala WA, Weber DJ, HICPAC. www.cdc.gov

Most Susceptible

Enveloped Viruses (HIV, HSV, Flu)

Bacteria (MRSA, VRE, Acinetobacter)

Fungi (Candida, Trichophyton)

Non-Enveloped Viruses (norovirus, HAV, polio)

Mycobacteria (M. tuberculosis)

Spores (C. difficile)

Most Resistant

HLD
Disinfection and Sterilization
Current Issues, New Research and New Technologies

- 24m and 30m BI for HP sterilizers
- Shift from HLD to sterilization dependent on technology
- Most infections associated with endoscopes
- Perfuse channeled scopes
- Ultrasound probe reprocessing
- Uncertain if OPA/glut kill HPV
- Develop a noncritical surface bundle including “no touch”
- “Wet” time, disinfectant kill time
- Touchable surfaces should be wiped and monitor cleaning
- Sporicide in all discharge rooms
- Biofilms
- CRE susceptible to germicides
- *C. auris* susceptible to most disinfectants but not antiseptics
Infections/Outbreaks Associated with Semicritical Medical Devices

<table>
<thead>
<tr>
<th>Medical Device</th>
<th>No. Outbreaks/Infections</th>
<th>No. Outbreaks/Infections with Bloodborne Pathogens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaginal Probes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ear-Nose-Throat Endoscopes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Urologic instruments (e.g. cystoscopes)</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Hysteroscopes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Laryngoscopes</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Transrectal ultrasound guided prostate</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Applanation tonometers</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>TEE-Transesophageal echocardiogram</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>GI Endoscopes/Bronchoscopes</td>
<td>~130</td>
<td>3 (HBV-1 GI; HCV-2 GI; HIV-0)</td>
</tr>
</tbody>
</table>
Infections/Outbreaks Associated with Semicritical Medical Devices

- HBV and HCV transmission during endoscopy and use of semicritical medical devices can occur, but it is rare
- Three reports of HCV and HBV transmission related to breaches involved in GI endoscope reprocessing
- No articles related to possible transmission of HIV via medical device
- Greatest evidence of transmission associated with GI endoscopes/bronchoscopes (~130 outbreaks) likely due to microbial load and complexity.
- Other semicritical medical devices are rarely associated with infections related to inadequate reprocessing
● Bacteria will survive if the elevator lever was improperly positioned (in horizontal position instead of 45°) in AER

● *E. faecalis* (7 log inoculum, 2-6 log recovered) and *E. coli* (0-3 log) survived disinfection of sealed and unsealed elevator wire channel duodenoscopes in 2 different AERs

● Ensure proper lever position when placed in AERs with PA
Disinfection and Sterilization
Current Issues, New Research and New Technologies

- 24m and 30m BI for HP sterilizers
- Shift from HLD to sterilization dependent on technology
- Most infections associated with endoscopes
- Perfuse channeled scopes
- Ultrasound probe reprocessing
- Uncertain if OPA/glut kill HPV

- Develop a noncritical surface bundle including “no touch”
- “Wet” time, disinfectant kill time
- Touchable surfaces should be wiped and monitor cleaning
- Sporicide in all discharge rooms
- Biofilms
- CRE susceptible to germicides
- C. auris susceptible to most disinfectants but not antiseptics
Reprocessing Channeled Endoscopes
Cystoscope- “completely immerse” in HLD (J Urology 2008.180:588)
Reprocessing Channeled Endoscopes

Cystoscope-HLD perfused through lumen with syringe (luer locks onto port and syringe filled and emptied until no air exits the scope nor air in barrel of syringe-syringe and lumen filled with HLD)
Reprocessing Channeled Endoscopes

<table>
<thead>
<tr>
<th>Exposure Method</th>
<th>CRE ($K., pneumoniae$) Inoculum before HLD (glutaraldehyde)</th>
<th>CRE ($K., pneumoniae$) Contamination after HLD</th>
</tr>
</thead>
</table>
| Passive HLD (immersed, not perfused) | 3.2×10^8
1.9×10^9
4.1×10^8 | 3.1×10^8
4.6×10^8
1.0×10^8 |
| Active HLD (perfused HLD into channel with syringe) | 3.0×10^8
9.2×10^8
8.4×10^8 | 0
0
0 |

- Pathogens must have exposure to HLD for inactivation
- Immerse channeled flexible scope into HLD will not inactivate channel pathogens
- Completely immerse the endoscope in HLD and ensure all channels (e.g., hysteroscopes, cystoscopes) are perfused
- Air pressure in channel stronger than fluid pressure at fluid-air interface
Disinfection and Sterilization
Current Issues, New Research and New Technologies

- 24m and 30m BI for HP sterilizers
- Shift from HLD to sterilization dependent on technology
- Most infections associated with endoscopes
- Perfuse channeled scopes
- Ultrasound probe reprocessing
- Uncertain if OPA/glut kill HPV

- Develop a noncritical surface bundle including “no touch”
- “Wet” time, disinfectant kill time
- Touchable surfaces should be wiped and monitor cleaning
- Sporicide in all discharge rooms
- Biofilms
- CRE susceptible to germicides
- C. auris susceptible to most disinfectants but not antiseptics
Do ultrasound transducers used for placing peripheral or central venous access devices require HLD/sterilization?
Do ultrasound transducers used for placing peripheral or central venous access devices require HLD/sterilization?

A publication has interpreted CDC and AIUM recommendations differently than most hospitals (AJIC 2018:46:913-920): ultrasound guided CVC insertion (critical-sterilize or HLD with sterile sheath and sterile gel); scan across unhealthy skin (semicritical-HLD and use with clean sheath and clean gel)
Transducer Disinfection for Insertion of Peripheral and Central Catheters

Association of Vascular Access Guideline. June 2018; AIUM 2017

• “All transducers/probes used for peripheral VAD insertion will undergo, at a minimum, low-level disinfection….” Clean (step 1) the probe prior to disinfection (step 2).

• “During assessment, consider using a single-use condom or commercially manufactured transducer sheath (excluded: transparent dressing, gloves) during all use where there is the possibility of contact with blood/body fluids or non-intact skin”

• “Perform ALL ultrasound guided vascular access device insertions (PIV, Midline, PICC, CVC, arterial line) with the use of a sterile sheath and single-use sterile gel”.

 ■ After the procedure, the used sheath should be inspected for tears and the transducer inspected for potential compromise

 ■ Once inspected, the probe should be cleaned and then disinfected.
Transducer Disinfection for Insertion of Peripheral and Central Catheters

• All clinicians involved in ultrasound guidance should undergo comprehensive training on disinfection of the US transducers.

• The AVA recommendations are similar to guidelines from the American Institute for Ultrasound in Medicine (AIUM): that is, internal probes-HLD; “interventional percutaneous procedure probes that are used for percutaneous needle or catheter placement...should be cleaned using LLD and be used in conjunction with a single-use sterile probe cover”, if probe cover compromised HLD the probe.
Transducer Disinfection for Insertion of Peripheral and Central Catheters

Comments

- Blood contamination of probe is infrequent
- Sheath plus cleaning plus LLD should eliminate HBV, HCV, HIV
- Likelihood of transmission, even if probe still contaminated, very remote – would require contaminating virus gaining entry via contact with the actual injection site
- Transmission of HIV, HBV, HCV via a probe using on external body surface never demonstrated
- Only semicritical medical device to transmit HBV or HCV is GI endoscope (HIV not transmitted)
- If all devices that could contact non-intact skin or be blood contaminated require HLD prior to reuse that would include linen/mattresses (Burn Center), stethoscopes, BP cuffs, xray cassettes, etc
Disinfection and Sterilization
Current Issues, New Research and New Technologies

- 24m and 30m BI for HP sterilizers
- Shift from HLD to sterilization dependent on technology
- Most infections associated with endoscopes
- Perfuse channeled scopes
- Ultrasound probe reprocessing
- Uncertain if OPA/glut kill HPV
- Develop a noncritical surface bundle including “no touch”
- “Wet” time, disinfectant kill time
- Touchable surfaces should be wiped and monitor cleaning
- Sporicide in all discharge rooms
- Biofilms
- CRE susceptible to germicides
- C. auris susceptible to most disinfectants but not antiseptics
Human Papilloma Virus

- Human Papilloma Virus (HPV)
 - HPV is transmitted through sexual and direct/indirect contact
 - Medical devices can become contaminated during use
 - If adequate disinfection of devices (e.g., endocavitary probes) does not occur, the next patient may be at risk for HPV infection
 - Based on two publications from the same researchers, currently FDA-cleared HLDs were not effective against HPV
ENDOSCOPE REPROCESSING: CHALLENGES
Susceptibility of Human Papillomavirus

- Most common STD
- In one study, FDA-cleared HLD (OPA, glut), no effect on HPV
- Finding inconsistent with other small, non-enveloped viruses such as polio and parvovirus
- Further investigation needed: test methods unclear; glycine; organic matter; comparison virus
- Conversation with CDC: validate and use HLD consistent with FDA-cleared instructions (no alterations)
What if HPV is Resistant to Aldehydes?

- If unlike all other non-enveloped viruses that are susceptible to aldehydes
- Upsets the Spaulding classification scheme (HLD kills all viruses)
- If only oxidizing agents kill HPV (transition to PA or HP alone or combination) or HP mist device (for probes)
Recent studies have suggested that HPVs are not susceptible to certain high-level disinfection protocols and that medical instruments may provide transmission of nosocomial HPVs infections. We aimed to determine the infectious load of HPVs from clinical lesions and to investigate HPV virions derived from model systems and clinical lesions in their abilities to be neutralized in classical disinfection protocols.

Methods
Infectious HPV virions were isolated from the 293T transfection system, organello epithelial tissue cultures, mouse xenografts. Clinical samples from respiratory warts and anogenital warts were obtained under IRB approval using emery paper to swab the apical tumors and were typed using the Seegene Amplicor® HPV28 detection platform. A TCI D assay was validated using RT-qPCR approaches to measure the end-point detection of viral E1/E4 mRNAs in infected HaCaT keratinocytes. Suspension-based disinfection protocols employed orthophthaldehydes (OPA), hypochlorite and alcohols.

Results
Preliminary assessment of HPV infectious titers suggest that compared to common warts, clinical RRP and anogenital samples have low levels of virions present at apical surfaces. In contrast to other reports, we found HPVs from a variety of sources were susceptible to a 2.5 to 4 log reduction in infectious titers when exposed as directed to the disinfectants.

Conclusions
We conclude that HPVs are susceptible to a variety of disinfection protocols. We plan to carefully assess the infectious titers of virions present HPV-induced lesions to better determine the risk of transmission from HPV-induced warts.
Current Issues, New Research and New Technologies

Sterilization of critical items
- Biological indicators, clarified Spaulding

High-level disinfection for semi-critical items
- Outbreaks with semicritical devices, endoscope reprocessing issues (duodenoscopes-lever position), channeled endoscopes, HPV risks/studies, ultrasound probes

Low-level disinfection of non-critical items
- Noncritical surface disinfection bundle, “wet” time, biofilms, continuously active disinfectant, colored disinfectant, sporicide for all discharges

Emerging Pathogens
- Inactivation data: \textit{Candida auris}, CRE-carbapenem-resistant \textit{Enterobacteriaceae}
Our Responsibility to the Future

Institute Practices that Prevent All Infectious Disease Transmission via Environment
Noncritical Medical Devices
Rutala et al. AJIC 2016;44:e1; Rutala, Weber. Env Issues NI, Farber 1987

• Noncritical medical devices
• Transmission: secondary transmission by contaminating hands/gloves via contact with the environment and transfer to patient
• Control measures: hand hygiene and low-level disinfection
• Noncritical devices (stethoscopes, blood pressure cuffs, wound vacuum), rare outbreaks
Disinfection and Sterilization
Current Issues, New Research and New Technologies

- 24m and 30m BI for HP sterilizers
- Shift from HLD to sterilization dependent on technology
- Most infections associated with endoscopes
- Perfuse channeled scopes
- Ultrasound probe reprocessing
- Uncertain if OPA/glut kill HPV

- Develop a noncritical surface bundle including “no touch”
- “Wet” time, disinfectant kill time
- Touchable surfaces should be wiped and monitor cleaning
- Sporicide in all discharge rooms
- Biofilms
- CRE susceptible to germicides
- C. auris susceptible to most disinfectants but not antiseptics
Disinfection of Noncritical Surfaces Bundle

NL Havill AJIC 2013;41:S26-30; Rutala, Weber AJIC 2019;47:A96-A105

- Develop policies and procedures
- Select cleaning and disinfecting products
- Educate staff—environmental services and nursing
- Monitor compliance (thoroughness of cleaning, product use) and feedback
- Implement “no touch” room decontamination technology and monitor compliance
Disinfection of Noncritical Surfaces Bundle
Rutala, Weber AJIC 2019;47:A96-A105

• Develop policies and procedures
 ■ Standardize C/D patient rooms and pieces of equipment throughout the hospital
 ■ All touchable hand contact surfaces wiped with disinfection daily, when spills occur and when the surfaces are visibly soiled.
 ■ All noncritical medical devices should be disinfected daily and when soiled
 ■ Clean and disinfectant sink and toilet
 ■ Damp mop floor with disinfectant-detergent
 ■ If disinfectant prepared on-site, document correct concentration
 ■ Address treatment time/contact time for wipes and liquid disinfectants (e.g., treatment time for wipes is the kill time and includes a wet time via wiping as well as the undisturbed time).
Effective Surface Decontamination

Product and Practice = Perfection
LOW-LEVEL DISINFECTION FOR NONCRITICAL EQUIPMENT AND SURFACES

<table>
<thead>
<tr>
<th>Germicide</th>
<th>Use Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethyl or isopropyl alcohol</td>
<td>70-90%</td>
</tr>
<tr>
<td>Chlorine</td>
<td>100ppm (1:500 dilution)</td>
</tr>
<tr>
<td>Phenolic</td>
<td>UD</td>
</tr>
<tr>
<td>Iodophor</td>
<td>UD</td>
</tr>
<tr>
<td>Quaternary ammonium (QUAT)</td>
<td>UD</td>
</tr>
<tr>
<td>QUAT with alcohol</td>
<td>RTU</td>
</tr>
<tr>
<td>Improved hydrogen peroxide (HP)</td>
<td>0.5%, 1.4%</td>
</tr>
<tr>
<td>PA with HP, 4% HP, chlorine (C. difficile)</td>
<td>UD</td>
</tr>
</tbody>
</table>

UD=Manufacturer’s recommended use dilution; others in development/testing-electrolyzed water; polymeric guanidine; cold-air atmospheric pressure plasma (Boyce Antimicrob Res IC 2016. 5:10)
Microbiological Disinfectant Hierarchy
Rutala WA, Weber DJ, HICPAC. www.cdc.gov

Most Resistant

- Spores (C. difficile)
- Mycobacteria (M. tuberculosis)
- Non-Enveloped Viruses (norovirus, HAV, polio)
- Fungi (Candida, Trichophyton)
- Bacteria (MRSA, VRE, Acinetobacter)
- Enveloped Viruses (HIV, HSV, Flu)

Most Susceptible
Disinfection of Noncritical Surfaces Bundle
NL Havill AJIC 2013;41:S26-30; Rutala, Weber AJIC 2019;47:A96-A105

• Develop policies and procedures
• Select cleaning and disinfecting products
• Educate staff to environmental services and nursing
• Monitor compliance (thoroughness of cleaning, product use) and feedback
• Implement “no touch” room decontamination technology and monitor compliance
These interventions (effective surface disinfection, thoroughness indicators) not enough to achieve consistent and high rates of cleaning/disinfection

No Touch
(supplements but do not replace surface cleaning/disinfection)
Enhanced Disinfection Leading to Reduction of Microbial Contamination and a Decrease in Patient Col/Infection

Anderson et al. Lancet 2017;289:805; Rutala et al. ICHE 2018

All enhanced disinfection technologies were significantly superior to Quat alone in reducing EIPs. Comparing the best strategy with the worst strategy (i.e., Quat vs Quat/UV) revealed that a reduction of 94% in EIP (60.8 vs 3.4) led to a 35% decrease in colonization/infection (2.3% vs 1.5%). Our data demonstrated that a decrease in room contamination was associated with a decrease in patient colonization/infection. First study which quantitatively described the entire pathway whereby improved disinfection decreases microbial contamination which in-turn reduced patient colonization/infection.
EFFICACY OF UVC AT TERMINAL DISINFECTION TO REDUCE HAIs
(A = C. difficile, B = VRE; UV effective in preventing VRE and C. difficile)

Marra AR, et al. ICHE 2018;39:20-31
“NO TOUCH” APPROACHES TO ROOM DECONTAMINATION
(UV/VHP~20 microbicidal studies, 12 HAI reduction studies; will not discuss technology with limited data)
This technology ("no touch"-microbicidal and ideally, HAI reduction per peer-reviewed literature) should be used (capital equipment budget) for terminal room disinfection (e.g., after discharge of patients on Contact Precautions).
Disinfection and Sterilization
Current Issues, New Research and New Technologies

- 24m and 30m BI for HP sterilizers
- Shift from HLD to sterilization dependent on technology
- Most infections associated with endoscopes
- Perfuse channeled scopes
- Ultrasound probe reprocessing
- Uncertain if OPA/glut kill HPV

- Develop a noncritical surface bundle including “no touch”
- “Wet” time, disinfectant kill time
- Touchable surfaces should be wiped and monitor cleaning
- Sporicide in all discharge rooms
- Biofilms
- CRE susceptible to germicides
- *C. auris* susceptible to most disinfectants but not antiseptics
Each chemical disinfectant requires a specific length of time it must remain in contact with a microorganism to achieve complete inactivation.

This is known as the “kill time” (or “contact time”) and the registered kill times for each microorganism will be clearly listed.

There are only two papers in the peer-review literature that assessed EPA-registered disinfectants that are directly on point to the question will hospital disinfectants kill hospital pathogens in 1 minute.
TABLE 2
Disinfectant Activity Against Antibiotic-Susceptible and Antibiotic-Resistant Bacteria

<table>
<thead>
<tr>
<th>Product</th>
<th>VSE 0.5 min</th>
<th>VSE 5 min</th>
<th>VRE 0.5 min</th>
<th>VRE 5 min</th>
<th>MSSA 0.5 min</th>
<th>MSSA 5 min</th>
<th>MRSA 0.5 min</th>
<th>MRSA 5 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesphene Ilse</td>
<td>>4.3</td>
<td>>4.3</td>
<td>>4.8</td>
<td>>4.8</td>
<td>>5.1</td>
<td>>5.1</td>
<td>>4.6</td>
<td>>4.6</td>
</tr>
<tr>
<td>Clorox</td>
<td>>5.4</td>
<td>>5.4</td>
<td>>4.9</td>
<td>>4.9</td>
<td>>5.0</td>
<td>>5.0</td>
<td>>4.6</td>
<td>>4.6</td>
</tr>
<tr>
<td>Lysol Disinfectant</td>
<td>>4.3</td>
<td>>4.3</td>
<td>>4.8</td>
<td>>4.8</td>
<td>>5.1</td>
<td>>5.1</td>
<td>>4.6</td>
<td>>4.6</td>
</tr>
<tr>
<td>Lysol Antibacterial</td>
<td>>5.5</td>
<td>>5.5</td>
<td>>5.5</td>
<td>>5.5</td>
<td>>5.1</td>
<td>>5.1</td>
<td>>4.6</td>
<td>>4.6</td>
</tr>
<tr>
<td>Vinegar</td>
<td>0.1</td>
<td>5.3</td>
<td>1.0</td>
<td>3.7</td>
<td>+1.1</td>
<td>+0.9</td>
<td>+0.6</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Abbreviations: MRSA, methicillin-resistant *Staphylococcus aureus*; MSSA, methicillin-susceptible *S aureus*; VRE, vancomycin-resistant *Enterococcus*; VSE, vancomycin-susceptible *Enterococcus*. Data represent mean of two trials (n=2). Values preceded by ">" represent the limit of detection of the assay. Assays were conducted at a temperature of 20°C and a relative humidity of 45%. Results were calculated as the log of Nd/No, where Nd is the titer of bacteria surviving after exposure and No is the titer of the control.
Bactericidal (S. aureus) Efficacy of EPA-Registered Towelettes
West, Teska, Oliver, AJIC, 2018

- Drying time curve based on surface wetness; bold-contact time (180s); dashed-dry (~145s)
- Wet time is not crucial for complete disinfection (wet or dry ~4 log\(_{10}\) reduction); 30s for log\(_{10}\) reduction
Bactericidal (S. aureus) Efficacy of EPA-Registered Towelettes
West, Teska, Oliver, AJIC, 2018

- Drying time curve based on surface wetness; bold-contact time (180s); dashed-dry (~260s)
- Wet time is not crucial for complete disinfection (wet or dry ~4.5 log_{10} reduction); 30s for log_{10} reduction
Disinfectant Kill Time
Rutala, Weber AJIC 2019;47:A96-A105

- This refutes the proposition that visual wetness is a proxy for determining effective disinfection and challenges the need for citations and punitive actions by accrediting agencies when a disinfectant does not stay wet for its registered contact time (e.g., dries in 1 minute but registered contact time is 2 minutes).

- Clearly, wet times are important but there are no data that demonstrate that wet times beyond 1 minute improve microbial reduction and have an infection prevention benefit.
Disinfection and Sterilization
Current Issues, New Research and New Technologies

- 24m and 30m BI for HP sterilizers
- Shift from HLD to sterilization dependent on technology
- Most infections associated with endoscopes
- Perfuse channeled scopes
- Ultrasound probe reprocessing
- Uncertain if OPA/glut kill HPV
- Develop a noncritical surface bundle including “no touch”
- “Wet” time, disinfectant kill time
- Touchable surfaces should be wiped and monitor cleaning
- Sporicide in all discharge rooms
- Biofilms
- CRE susceptible to germicides
- C. auris susceptible to most disinfectants but not antiseptics
ALL “TOUCHABLE” (HAND CONTACT) SURFACES SHOULD BE WIPED WITH DISINFECTANT

“High touch” objects only recently defined (no significant differences in microbial contamination of different surfaces) and “high risk” objects not epidemiologically defined.
EVIDENCE THAT ALL TOUCHABLE ROOM SURFACES ARE EQUALLY CONTAMINATED

Table 1. Pre-cleaning and Post-cleaning Bacterial Load Measurements for High-, Medium-, and Low-Touch Surfaces

<table>
<thead>
<tr>
<th>Surface (no. of samples)</th>
<th>Pre-cleaning</th>
<th>Post-cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>High (n = 40)</td>
<td>71.9 (46.5–97.3)</td>
<td>9.6 (3.8–15.4)</td>
</tr>
<tr>
<td>Medium (n = 42)</td>
<td>44.2 (28.1–60.2)</td>
<td>9.3 (1.2–17.5)</td>
</tr>
<tr>
<td>Low (n = 37)</td>
<td>56.7 (34.2–79.2)</td>
<td>5.7 (2.01–9.4)</td>
</tr>
</tbody>
</table>

Note. CFU, colony-forming unit; CI, confidence interval.

Table 2. Number of culture sites and prevalence of contamination with nosocomial pathogens in intensive care units (N=523)

<table>
<thead>
<tr>
<th>Ward</th>
<th>HCWs’ hands</th>
<th>Surfaces distant from patients</th>
<th>Surfaces close to patients</th>
<th>Prevalence of contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3/10 (30%)</td>
<td>0/22 (0%)</td>
<td>6/25 (24.0%)</td>
<td>9/57 (15.8%)</td>
</tr>
<tr>
<td>B</td>
<td>2/9 (22.2%)</td>
<td>4/19 (21.1%)</td>
<td>5/48 (10.4%)</td>
<td>11/76 (14.5%)</td>
</tr>
<tr>
<td>C</td>
<td>2/10 (20%)</td>
<td>2/26 (7.7%)</td>
<td>7/49 (14.3%)</td>
<td>11/85 (12.9%)</td>
</tr>
<tr>
<td>D</td>
<td>1/9 (11.1%)</td>
<td>2/24 (18.2%)</td>
<td>7/45 (15.6%)</td>
<td>10/78 (12.8%)</td>
</tr>
<tr>
<td>E</td>
<td>0/5 (0%)</td>
<td>4/22 (18.2%)</td>
<td>3/30 (10%)</td>
<td>7/57 (12.3%)</td>
</tr>
<tr>
<td>F</td>
<td>1/10 (10%)</td>
<td>0/11 (0%)</td>
<td>4/31 (12.9%)</td>
<td>5/52 (9.6%)</td>
</tr>
<tr>
<td>G</td>
<td>0/3 (0%)</td>
<td>2/14 (14.3%)</td>
<td>0/20 (0%)</td>
<td>2/37 (5.4%)</td>
</tr>
<tr>
<td>H</td>
<td>1/10 (10%)</td>
<td>0/16 (0%)</td>
<td>1/55 (1.8%)</td>
<td>2/81 (2.5%)</td>
</tr>
<tr>
<td>Total</td>
<td>10/66 (15.2%)</td>
<td>14/154 (9.1%)</td>
<td>32/303 (10.9%)</td>
<td>57/523 (10.9%)</td>
</tr>
</tbody>
</table>

HCW, healthcare worker.

* Number of contaminated samples/number of samples obtained.

Effective Surface Decontamination

Product and Practice = Perfection
Thoroughness of Environmental Cleaning

Carling et al. ECCMID, Milan, Italy, May 2011

Mean = 32%

- DAILY CLEANING
- TERMINAL CLEANING

>110,000 Objects

Mean = 32%

- DAILY CLEANING
- TERMINAL CLEANING

HEHSG HOSP
IOWA HOSP
OTHER HOSP
OPERATING ROOMS
NICU
EMS VEHICLES
ICU DAILY
AMB CHEMO
MD CLINIC
LONG TERM
DIALYSIS

Cleaned
Mean = 32%

Objects

% Cleaned
95% CI
40
60
80
100
• Visual assessment-not a reliable indicator of surface cleanliness
• ATP bioluminescence-measures organic debris (each unit has own reading scale, <250-500 RLU)
• Microbiological methods-<2.5CFUs/cm²-pass; can be costly and pathogen specific
• Fluorescent marker-transparent, easily cleaned, environmentally stable marking solution that fluoresces when exposed to an ultraviolet light (applied by IP unbeknown to EVS, after EVS cleaning, markings are reassessed)
Hospitals can improve their thoroughness of terminal room disinfection through fluorescent monitoring.
Fluorescent marker is a useful tool in determining how thoroughly a surface is wiped and mimics the microbiological data better than ATP.
There was no statistical correlation between ATP levels and standard aerobic plate counts.
Future May Have Methods to Ensure Thoroughness Such as Colorized Disinfectant

Colorized disinfection – contact time compliance

- Color-fading time matched to disinfectant contact time --> enforces compliance
- Provides real-time feedback when disinfection is complete
- Trains staff on importance of contact time as they use the product
Disinfection and Sterilization
Current Issues, New Research and New Technologies

- 24m and 30m BI for HP sterilizers
- Shift from HLD to sterilization dependent on technology
- Most infections associated with endoscopes
- Perfuse channeled scopes
- Ultrasound probe reprocessing
- Uncertain if OPA/glut kill HPV

- Develop a noncritical surface bundle including “no touch”
- “Wet” time, disinfectant kill time
- Touchable surfaces should be wiped and monitor cleaning
- Sporicide in all discharge rooms
- Biofilms
- CRE susceptible to germicides
- C. auris susceptible to most disinfectants but not antiseptics
Asymptomatic carriers contribute to C. difficile transmission

1. Curry SR. Clin Infect Dis 2013 (29% of hospital-associated CDI cases linked to carriers by MLVA); 2. Blixt T. Gastroenterol 2017;152:1031 (exposure to carriers increased CDI risk); 3. Longtin Y. JAMA Int Med 2016 (screening for and isolating carriers reduced CDI by 63%); 4. Samore MH. Am J Med 1996;100:32 (only 1% of cases linked to asymptomatic carriers - roommates and adjacent rooms - by PFGE/REA); 5. Eyre DW. PLOS One 2013;8:e78445 (18 carriers: no links to subsequent CDI cases); 6. Lisenmyer K. Clin Infect Dis 2018 (screening and isolation of carriers associated with control of a ward outbreak); 7. Paquet-Bolduc B. Clin Infect Dis 2018 (unit-wide screening and isolation of carriers not associated with shorter outbreak durations vs historical controls); 8. Donskey CJ. Infect Control Hosp Epidemiol 2018 (14% of healthcare-associated CDI cases linked to LTCF asymptomatic carriers); 9. Kong LY. Clin Infect Dis 2018 (23% of healthcare-associated CDI linked to carriers vs 42% to CDI cases and 35% to asymptomatic carriers).
Interventions focused on CDI rooms

Sporicidal disinfection only in CDI rooms

CDI rooms

Non-CDI rooms

Interventions addressing CDI cases and asymptomatic carriers

Sporicidal disinfection in CDI and non-CDI rooms
The percentage of rooms contaminated with *Clostridium difficile* was significantly reduced during the period with a sporicidal product was used 5% vs 24%. Results suggest sporicidal disinfectant in all postdischarge rooms could potentially be beneficial in reducing the risk for *C. difficile* transmission from contaminated surfaces.
Disinfection and Sterilization
Current Issues, New Research and New Technologies

- 24m and 30m BI for HP sterilizers
- Shift from HLD to sterilization dependent on technology
- Most infections associated with endoscopes
- Perfuse channeled scopes
- Ultrasound probe reprocessing
- Uncertain if OPA/glut kill HPV
- Develop a noncritical surface bundle including “no touch”
- “Wet” time, disinfectant kill time
- Touchable surfaces should be wiped and monitor cleaning
- Sporicide in all discharge rooms
- Biofilms
- CRE susceptible to germicides
- C. auris susceptible to most disinfectants but not antiseptics
Three types of biofilm

- Traditional hydrated biofilm (water content 90%)
- Build-up biofilm—occurs in endoscope channels
- Dry surface biofilm—heterogenous accumulation of organisms and other material in a dry matrix (water content 61%)

 Raises questions about the inactivation of microbes with a dry surface biofilm by currently used cleaning/disinfecting methods
Figure 1 Comparison of traditional to cyclic build-up biofilm

<table>
<thead>
<tr>
<th>Stage 1</th>
<th>Stage 2</th>
<th>Stage 3</th>
</tr>
</thead>
</table>

Direction of Fluid Flow:
- Continuously bathed in Fluid

Biofilm
- Continuous Hydration
- ~300 - 500μm thick

b

Cyclic Build-up Biofilm
- Cycle 1
- Cycle 2
- Cycle 50

Build-up Biofilm; layers of dried organic matrix with embedded organisms

Cycle:
- post-patient: hydrated
- cleaning: hydrated
- disinfection: hydrated
- storage: dry

~10 - 50μm thick

Dry Biofilms on Healthcare Surfaces
Examples of “Dry” Biofilms Recovered from Surfaces
Ledwoch et al. J Hosp Infect 2018;100:e47-e56

Figure 4. Examples of “dry” biofilms recovered from surfaces; magnification x10,000. (A, B) Patient folders, (C) patient chair, (D) keyboard key. Images of biofilms were coloured in purple to help visualization and contrast using GNU Image manipulation program (GIMP 2.8) software. Images were not otherwise altered.
Investigate the occurrence, prevalence and diversity of dry biofilms on hospital surfaces

61 terminally cleaned rooms were investigated for the dry biofilms using culture-based methods and SEM

Multi-species dry biofilms were recovered from 95% of 61 samples

Dry biofilms were predominately formed by gram-positive bacteria, although occasional *Acinetobacter* spp were identified

Their role in transmission needs to be established
Dry Biofilms on Healthcare Surfaces
Difference in “Dry” Biofilm Composition Between Hospitals
Ledwoch et al. J Hosp Infect 2018;100:e47-e56

Figure 3. Difference in ‘dry’ biofilm composition between hospitals. △, Anoxybacillus flavothermus; □, Bacillus amyloliquefaciens; ○, Bacillus anthracis; □, Bacillus cereus; □, Bacillus licheniformis; □, Bacillus megaterium; □, Bacillus pumilus; □, Bacillus sp.; □, Bacillus subtilis; □, Bacillus thuringiensis; □, Staphylococcus aureus; □, Staphylococcus epidermidis; □, Staphylococcus lugdunensis; □, Staphylo-
coccus pasteurii; □, Staphylococcus saprophyticus; □, Staphylococcus warneri; □, other.
Current Issues, New Research and New Technologies

- Sterilization of critical items
 - Biological indicators, clarified Spaulding
- High-level disinfection for semi-critical items
 - Outbreaks with semicritical devices, endoscope reprocessing issues (duodenoscopes-lever position), channeled endoscopes, HPV risks/studies, ultrasound probes
- Low-level disinfection of non-critical items
 - Noncritical surface disinfection bundle, “wet” time, biofilms, continuously active disinfectant, colored disinfectant, sporicide for all discharges
- Emerging Pathogens
 - Inactivation data- *Candida auris*, CRE-carbapenem-resistant *Enterobacteriaceae*
Disinfection and Sterilization
Current Issues, New Research and New Technologies

- 24m and 30m BI for HP sterilizers
- Shift from HLD to sterilization dependent on technology
- Most infections associated with endoscopes
- Perfuse channeled scopes
- Ultrasound probe reprocessing
- Uncertain if OPA/glut kill HPV
- Develop a noncritical surface bundle including “no touch”
- “Wet” time, disinfectant kill time
- Touchable surfaces should be wiped and monitor cleaning
- Sporicide in all discharge rooms
- Biofilms
- CRE susceptible to germicides
- *C. auris* susceptible to most disinfectants but not antiseptics
Germicidal Activity against Carbapenem/Colistin-Resistant Enterobacteriaceae Using a Quantitative Carrier Test Method

Hajime Kanamori, a,b William A. Rutala, a,b Maria F. Gergen, a Emily E. Sickbert-Bennett, a,b David J. Weber a,b

a Department of Hospital Epidemiology, University of North Carolina Health Care, Chapel Hill, North Carolina, USA
b Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA

ABSTRACT Susceptibility to germicides for carbapenem/colistin-resistant Enterobacteriaceae is poorly described. We investigated the efficacy of multiple germicides against these emerging antibiotic-resistant pathogens using the disc-based quantitative carrier test method that can produce results more similar to those encountered in health care settings than a suspension test. Our study results demonstrated that germicides commonly used in health care facilities likely will be effective against carbapenem/colistin-resistant Enterobacteriaceae when used appropriately in health care facilities.

KEYWORDS carbapenem-resistant Enterobacteriaceae, Klebsiella pneumoniae carbapenemase, colistin-resistant Enterobacteriaceae, mcr-1, germicides, disinfectants, antiseptics, efficacy
Efficacy of Disinfectants and Antiseptics against Carbapenem-Resistant *Enterobacteriaceae*

- $\geq 3 \log_{10}$ reduction (CRE, 1m, 5% FCS, QCT)
 - 0.20% peracetic acid
 - 2.4% glutaraldehyde
 - 0.5% Quat, 55% isopropyl alcohol
 - 58% ethanol, 0.1% QUAT
 - 28.7% isopropyl alcohol, 27.3% ethyl alcohol, 0.61% QAC
 - 0.07% o-phenylphenol, 0.06% p-tertiary amylphenol
 - ~5,250 ppm chlorine
 - 70% isopropyl alcohol
 - Ethanol hand rub (70% ethanol)
 - 0.65% hydrogen peroxide, 0.15% peroxyacetic acid
 - Accelerated hydrogen peroxide, 1.4% and 2.0%
 - Quat, (0.085% QACs; not *K. pneumoniae*)
Deadly, drug-resistant Candida yeast infection spreads in the US

Candida auris causes multidrug-resistant infections that can result in organ failure
Kateryna Kon/Science Photo Library
Candida auris is a globally emerging pathogen that is often resistant to multiple antifungal agents.

In several reports, C. auris has been recovered from the hospital environment.

CDC has recommended daily and post-discharge disinfection of surfaces in rooms of patients with C. auris infection.

No hospital disinfectants are registered for use specifically against C. auris, and its susceptibility to germicides is not known.
Efficacy of Disinfectants and Antiseptics against *Candida auris*
Rutala, Kanamori, Gergen, Sickbert-Bennett, Weber, ICHE 2018

- $\geq 3 \log_{10}$ reduction ($C. \text{ \textit{auris}}, 1m, 5\% \text{ FCS, QCT}$)
 - 0.20% peracetic acid
 - 2.4% glutaraldehyde
 - 0.65% hydrogen peroxide, 0.14% peroxyacetic acid
 - 0.5% Quat, 55% isopropyl alcohol
 - Disinfecting spray (58% ethanol, 0.1% QUAT)
 - 28.7% isopropyl alcohol, 27.3% ethyl alcohol, 0.61% QAC
 - 0.07% o-phenylphenol, 0.06% p-tertiary amylphenol
 - 70% isopropyl alcohol
 - ~5,250 ppm chlorine
 - Ethanol hand rub (70% ethanol)
 - Accelerated hydrogen peroxide, 1.4%
 - Accelerated hydrogen peroxide, 2%
Efficacy of Disinfectants and Antiseptics against *Candida auris*

Rutala, Kanamori, Gergen, Sickbert-Bennett, Weber, ICHE 2018

- $\leq 3 \log_{10}$ (most $< 2 \log_{10}$) reduction (*C. auris*, 1m, 5% FCS, QCT)
 - 0.55% OPA
 - 3% hydrogen peroxide
 - Quat, (0.085% QACs)
 - 10% povidone-iodine
 - $\sim 1,050$ ppm chlorine
 - 2% Chlorhexidine gluconate-CHG
 - 4% CHG
 - 0.5% triclosan
 - 1% CHG, 61% ethyl alcohol
 - 1% chloroxylenol
Disinfection and Sterilization
Current Issues, New Research and New Technologies
www.disinfectionandsterilization.org

• Current Issues, New Research and New Technologies
 ■ Sterilization of critical items
 ◆ Biological indicators, clarified Spaulding
 ■ High-level disinfection for semi-critical items
 ◆ Outbreaks with semicritical devices, endoscope reprocessing issues (duodenoscopes-lever position), channeled endoscopes, HPV risks/studies, ultrasound probes
 ■ Low-level disinfection of non-critical items
 ◆ Noncritical surface disinfection bundle, “wet” time, biofilms, continuously active disinfectant, colored disinfectant, sporicide for all discharges
 ■ Emerging Pathogens
 ◆ Inactivation data- Candida auris, CRE-carbapenem-resistant Enterobacteriaceae
Disinfection and Sterilization
Current Issues, New Research and New Technologies

- 24m and 30m BI for HP sterilizers
- Shift from HLD to sterilization dependent on technology
- Most infections associated with endoscopes
- Perfuse channeled scopes
- Ultrasound probe reprocessing
- Uncertain if OPA/glut kill HPV
- Develop a noncritical surface bundle including “no touch”
- “Wet” time, disinfectant kill time
- Touchable surfaces should be wiped and monitor cleaning
- Sporicide in all discharge rooms
- Biofilms
- CRE susceptible to germicides
- C. auris susceptible to most disinfectants but not antiseptics
Disinfection and Sterilization: Current Issues, New Research and New Technologies

- New D/S technologies (Bi's, persistent disinfectant) and practices (e.g., monitoring cleaning) could reduce risk of infection associated with devices and surfaces.
- Endoscope represent a nosocomial hazard. Urgent need to understand the gaps in endoscope reprocessing. Reprocessing guidelines must be followed to prevent exposure to pathogens that may lead to infection. Endoscopes have narrow margin of safety and manufacturers should be encouraged to develop practical sterilization technology.
- The contaminated surface environment in hospital rooms is important in the transmission of healthcare-associated pathogens (MRSA, VRE, *C. difficile*, *Acinetobacter*). Thoroughness of cleaning should be monitored (e.g., fluorescence).
- In general, emerging pathogens are susceptible to currently available disinfectants and technologies (UV). However, some pathogens need additional information (e.g., HPV).
THANK YOU!

www.disinfectionandsterilization.org