Endoscope Reprocessing:
The Need to Shift from HLD to Sterilization

William A. Rutala, Ph.D., M.P.H., C.I.C.
Director, Statewide Program for Infection Control and Epidemiology
and Research Professor of Medicine, University of North Carolina
at Chapel Hill, NC, USA
Former Director, Hospital Epidemiology, Occupational Health and
Safety, UNC Hospitals, Chapel Hill, NC (1979-2017)
Consultations
- ASP (Advanced Sterilization Products), PDI

Honoraria
- PDI, ASP, 3M

Scientific Advisory Board
- Kinnos

Grants
- CDC
Our Responsibility to the Future

Prevent All Infectious Disease Transmission by Medical Devices in 5 years
Duodenoscopes and Endoscope Reprocessing: A Need to Shift from Disinfection to Sterilization

- Sources of healthcare-associated pathogens
- Evaluate the cause of endoscope-related outbreaks
- Review the outbreaks associated with ERCP and endoscopic procedures
- Discuss the alternatives that exist today that might improve the safety margin associated with duodenoscope/endoscope reprocessing
- Describe how to prevent future outbreaks associated with duodenoscopes and other endoscopes
Semicritical Medical Devices
Rutala et al. AJIC 2016;44:e47

- **Semicritical**
  - Transmission: direct contact
  - Control measure: high-level disinfection
  - Endoscopes top ECRI list of 10 technology hazards, >130 outbreaks (GI, bronchoscopes)
    - 0 margin of safety
      - Microbial load, $10^7$-$10^{10}$
      - Complexity
      - Biofilm
  - Other semicritical devices, rare outbreaks
    - ENT scopes, endocavitary probes (prostate, vaginal, TEE), laryngoscopes, cystoscopes
    - Reduced microbial load, less complex
### Infections/Outbreaks Associated with Semicritical Medical Devices

Rutala, Weber, AJIC, In press

<table>
<thead>
<tr>
<th>Medical Device</th>
<th>No. Outbreaks/Infections</th>
<th>No. Outbreaks/Infections with Bloodborne Pathogens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaginal Probes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nasal Endoscopes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hysteroscopes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Laryngoscopes</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Urologic instrumentation (eg, cystoscope)</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Transrectal-ultrasound guided prostate</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>TEE-Transesophageal echocardiogram</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Applanation tonometer</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>GI Endoscopes/Bronchoscopes</td>
<td>&gt;130</td>
<td>3 (HBV-1 GI; HCV-2 GI; HIV-0)</td>
</tr>
</tbody>
</table>
What are the risks associated with GI endoscopes and bronchoscopes?
### Transmission of Infection by Endoscopy


<table>
<thead>
<tr>
<th>Scope</th>
<th>Outbreaks</th>
<th>Micro (primary)</th>
<th>Pts Contaminated</th>
<th>Pts Infected</th>
<th>Cause (primary)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper GI</td>
<td>19</td>
<td>Pa, <em>H. pylori</em>, <em>Salmonella</em></td>
<td>169</td>
<td>56</td>
<td>Cleaning/Disinfection (C/D)</td>
</tr>
<tr>
<td>Sigmoid/Colonoscopy</td>
<td>5</td>
<td><em>Salmonella</em>, HCV</td>
<td>14</td>
<td>6</td>
<td>Cleaning/Disinfection</td>
</tr>
<tr>
<td>ERCP</td>
<td>23</td>
<td><em>P. aeruginosa</em> (Pa)</td>
<td>152</td>
<td>89</td>
<td>C/D, water bottle, AER</td>
</tr>
<tr>
<td>Bronchoscopy</td>
<td>51</td>
<td>Pa, Mtb, Mycobacteria</td>
<td>778</td>
<td>98</td>
<td>C/D, AER, water</td>
</tr>
<tr>
<td>Totals</td>
<td>98</td>
<td></td>
<td>1113</td>
<td>249</td>
<td></td>
</tr>
</tbody>
</table>

Based on outbreak data, if eliminated deficiencies associated with cleaning, disinfection, AER, contaminated water and drying would eliminate about 85% of the outbreaks.
In January 2015, after several outbreaks of serious infections, Senator Murray initiated an investigation to determine the extent of duodenoscope-linked infections.

Between 2012 and spring 2015, closed-channel duodenoscopes were linked to at least 25 different incidents of antibiotic-resistant infections that sickened at least 250 patients worldwide.

None of the manufacturers of the “closed-channel” duodenoscopes had sufficient data to show that duodenoscopes could be cleaned reliably between uses.
### Recent Endoscopy-related Outbreaks of MDRO Without Reprocessing Breaches

Rutala WA et al. AJIC, In press

<table>
<thead>
<tr>
<th>MDRO</th>
<th>Scope</th>
<th>No.</th>
<th>Recovered From Scope</th>
<th>Molecular Link</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>P. aeruginosa</em> (VIM-2)</td>
<td>Duodenoscope</td>
<td>22</td>
<td>Yes, under forceps elevator</td>
<td>Yes</td>
<td>Verfaillie CJ, 2015</td>
</tr>
<tr>
<td><em>E. coli</em> (AmpC)</td>
<td>Duodenoscope</td>
<td>35</td>
<td>Yes (2 scopes)</td>
<td>Yes</td>
<td>Wendorf, 2015</td>
</tr>
<tr>
<td><em>K. pneumoniae</em> (OXA)</td>
<td>Duodenoscope</td>
<td>12</td>
<td>No</td>
<td>Yes</td>
<td>Kola A, 2015</td>
</tr>
<tr>
<td><em>E. coli</em> (NDM-CRE)</td>
<td>Duodenoscope</td>
<td>39</td>
<td>Yes</td>
<td>Yes</td>
<td>Epstein L, 2015</td>
</tr>
<tr>
<td><em>K. pneumoniae</em></td>
<td>Duodenoscope</td>
<td>15</td>
<td>No</td>
<td>Yes</td>
<td>Kim S, 2016</td>
</tr>
<tr>
<td><em>K. pneumoniae</em></td>
<td>Duodenoscope</td>
<td>34</td>
<td>Yes</td>
<td>Yes</td>
<td>Marsh J, 2015</td>
</tr>
<tr>
<td><em>E. coli</em></td>
<td>Duodenoscope</td>
<td>3</td>
<td>No</td>
<td>Unknown</td>
<td>Smith Z, 2015</td>
</tr>
<tr>
<td><em>K. pneumoniae</em></td>
<td>Duodenoscope</td>
<td>13</td>
<td>Yes</td>
<td>Yes</td>
<td>Carbonne A, 2010</td>
</tr>
</tbody>
</table>
Carbapenem-Resistant *Enterobacteriaceae* (CRE) and Multidrug Resistant Organisms (MDRO)

- *Klebsiella*, *Enterobacter* and *E. coli* are examples of *Enteriobacteriaceae*, a normal part of enteric microbes, that have become resistant to carbapenem.
- Healthy people usually do not generally get CRE infections.
- Infections with CRE and MDROs are very difficult to treat and can be deadly.
- Likely that MDR pathogens are acting as a “marker” or ‘indicator” organism for ineffective reprocessing of duodenoscopes.
Reason for Endoscope-Related Outbreaks

- Margin of safety with endoscope reprocessing minimal or non-existent
- Microbial load
  - GI endoscopes contain $10^7$-$10^{10}$
  - Cleaning results in 2-6 log$\text{_{10}}$ reduction
  - High-level disinfection results in 4-6 log$\text{_{10}}$ reduction
  - Results in a total 6-12 log$\text{_{10}}$ reduction of microbes
  - Level of contamination after processing: 4log$\text{_{10}}$ (maximum contamination, minimal cleaning/HLD)
- Complexity of endoscope and endoscope reprocessing
- Biofilms-may contribute to failure of endoscope reprocessing
NDM-producing E. coli recovered from elevator channel (elevator channel orients catheters, guide wires and accessories into the endoscope visual field); crevices difficult to access with cleaning brush and may impede effective reprocessing. Very high microbial load $10^{7-10}$. 
Reason for Endoscope-Related Outbreaks

- Margin of safety with endoscope reprocessing minimal or non-existent
- Microbial load
  - GI endoscopes contain $10^7-10$
  - Cleaning results in 2-6 log$_{10}$ reduction
  - High-level disinfection results in 4-6 log$_{10}$ reduction
  - Results in a total 6-12 log$_{10}$ reduction of microbes
  - Level of contamination after processing: 4log$_{10}$ (maximum contamination, minimal cleaning/HLD)
- Complexity of endoscope and endoscope reprocessing
- Biofilms - may contribute to failure of endoscope reprocessing
Reason for Endoscope-Related Outbreaks

- Margin of safety with endoscope reprocessing minimal or non-existent
- Microbial load
  - GI endoscopes contain $10^7-10$
  - Cleaning results in 2-6 log$_{10}$ reduction
  - High-level disinfection results in 4-6 log$_{10}$ reduction
  - Results in a total 6-12 log$_{10}$ reduction of microbes
  - Level of contamination after processing: 4log$_{10}$ (maximum contamination, minimal cleaning/HLD)
- Complexity of endoscope and endoscope reprocessing
- Biofilms-may contribute to failure of endoscope reprocessing
FEATURES OF ENDOSCOPES THAT PREDISPOSE TO DISINFECTION FAILURES


- Heat labile
- Long, narrow lumens (3.5ft, 1-3mm)
- Right angle bends
- Rough or pitted surfaces
- Springs and valves
- Damaged channels may impede microbial exposure to HLD
- Heavily contaminated with pathogens, $10^7$-$10^{10}$
- Cleaning (2-6 log\textsubscript{10} reduction) and HLD (4-6 log\textsubscript{10} reduction) essential for patient safe instrument
Multisociety guideline on reprocessing flexible GI endoscopes: 2016 update

Prepared by: REPROCESSING GUIDELINE TASK FORCE

Bret T. Petersen, MD, FASGE, Chair, Jonathan Cohen, MD, FASGE, Ralph David Hambrick, III, RN, Navtej Buttar, MD, David A. Grenciwal, MD, FASGE, Jonathan M. Buscaglia, MD, FASGE, James Collins, RN, Glenn Eisen, MD, MPH, FASGE

This article was reviewed and approved by the Governing Board of the American Society for Gastrointestinal Endoscopy (ASGE).
Performed all 12 steps with only 1.4% of endoscopes using manual versus 75.4% of those processed using AER.

**TABLE 3. Documented Completion of Steps During Manual Cleaning With High-Level Disinfection Reprocessing**

<table>
<thead>
<tr>
<th>Observed Activity</th>
<th>Steps Completed (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leak test performed in clear water</td>
<td>77</td>
</tr>
<tr>
<td>Disassemble endoscope completely</td>
<td>100</td>
</tr>
<tr>
<td>Brush all endoscope channels and components</td>
<td>43</td>
</tr>
<tr>
<td>Immerse endoscope completely in detergent</td>
<td>99</td>
</tr>
<tr>
<td>Immerse components completely in detergent</td>
<td>99</td>
</tr>
<tr>
<td>Flush endoscope with detergent</td>
<td>99</td>
</tr>
<tr>
<td>Rinse endoscope with water</td>
<td>96</td>
</tr>
<tr>
<td>Purge endoscope with air</td>
<td>84</td>
</tr>
<tr>
<td>Load and complete automated cycle for high-level disinfection</td>
<td>100</td>
</tr>
<tr>
<td>Flush endoscope with alcohol</td>
<td>86</td>
</tr>
<tr>
<td>Use forced air to dry endoscope</td>
<td>45</td>
</tr>
<tr>
<td>Wipe down external surfaces before hanging to dry</td>
<td>90</td>
</tr>
</tbody>
</table>
Automated Endoscope Reprocessors

AERs automate and standardize endoscope reprocessing steps
## Microbial Surveillance of GI Endoscopes


<table>
<thead>
<tr>
<th>Characteristics of Sample</th>
<th>Action Level (TCU&gt;100/scope) or EIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastroscope</td>
<td>26.6%</td>
</tr>
<tr>
<td>Colonoscope</td>
<td>33.7%</td>
</tr>
<tr>
<td>Duodenoscope</td>
<td>34.7%</td>
</tr>
<tr>
<td>Echo-endoscope</td>
<td>31.9%</td>
</tr>
<tr>
<td>AER</td>
<td>27.2%</td>
</tr>
<tr>
<td>Manual</td>
<td>39.3%</td>
</tr>
<tr>
<td>Age of endoscope &lt;2 years</td>
<td>18.9%</td>
</tr>
<tr>
<td>Age of endoscope &gt;2 years</td>
<td>38.8%</td>
</tr>
</tbody>
</table>
Visual Inspection of GI Endoscopes and Bronchoscopes

- All endoscopes (n=20) had visible irregularities (e.g., scratches)
- Researchers observed fluid (95%), discoloration, and debris in channels
- 60% scopes with microbial contamination

Bronchoscopes, Ofstead et al. Chest. 2018
- Visible irregularities were observed in 100% (e.g., retained fluid, scratches, damaged insertion tubes)
- Microbial contamination in 58%
- Reprocessing practices deficient at 2 of 3 sites
Reason for Endoscope-Related Outbreaks

- Margin of safety with endoscope reprocessing minimal or non-existent
- Microbial load
  - GI endoscopes contain $10^7$-$10^{10}$
  - Cleaning results in 2-6 log$_{10}$ reduction
  - High-level disinfection results in 4-6 log$_{10}$ reduction
  - Results in a total 6-12 log$_{10}$ reduction of microbes
  - Level of contamination after processing: 4log$_{10}$ (maximum contamination, minimal cleaning/HLD)
- Complexity of endoscope and endoscope reprocessing
- Biofilms-may contribute to failure of endoscope reprocessing
Biofilms on Instruments and Environmental Surfaces
Alfa, AJIC 2019, In press.

- Three types of biofilm
  - Traditional hydrated biofilm (water content 90%)
  - Build-up biofilm—occurs in endoscope channels
  - Dry surface biofilm—heterogenous accumulation of organisms and other material in a dry matrix (water content 61%)
    - Raises questions about the inactivation of microbes with a dry surface biofilm by currently used cleaning/disinfecting methods
Figure 1 Comparison of traditional to cyclic build-up biofilm

**a**

<table>
<thead>
<tr>
<th>Stage 1</th>
<th>Stage 2</th>
<th>Stage 3</th>
</tr>
</thead>
</table>

**Direction of Fluid Flow:**
- Continuously bathed in Fluid
- Biofilm → Continuous Hydration

~300 - 500μm thick

**b**

**Cyclic Build-up Biofilm**

- Cycle 1
- Cycle 2
- Cycle 50

**Build-up Biofilm:**
- Layers of dried organic matrix with embedded organisms

~10 - 50μm thick

---

High-Level Disinfection
No Margin of Safety

0 margin of safety

Microbial contamination $10^7$-$10^{10}$: compliant with reprocessing guidelines 10,000 microbes after reprocessing:
maximum contamination, minimal cleaning ($10^2$)/HLD ($10^4$)
If the margin of safety is so small that perfection is required, then the design is too complex and the process is too unforgiving to be practical is a real-world setting.
What Should We Do Now?

Interim Response to ERCP Outbreaks
No single, simple and proven technology or prevention strategy that hospitals can use to guarantee patient safety.

- Of course, must continue to emphasize the enforcement of evidenced-based practices, including equipment maintenance and routine audits with at least yearly competency testing of reprocessing staff.

- Must do more or additional outbreaks will continue.
PRECLEAN-point-of-use (bedside) remove debris by wiping exterior and aspiration of detergent through air/water and biopsy channels; leak test

CLEAN-mechanically cleaned with water and enzymatic cleaner

HLD/STERILIZE-immersce scope and perfuse HLD/sterilant through all channels for exposure time (>2% glut at 20m at 20°C). If AER used, review model-specific reprocessing protocols from both the endoscope and AER manufacturer

RINSE-scope and channels rinsed with sterile water, filtered water, or tap water. Flush channels with alcohol and dry

DRY-use forced air to dry insertion tube and channels

STORE-hang in vertical position to facilitate drying; stored in a manner to protect from contamination
Gastrointestinal Endoscopes
A Need to Shift From Disinfection to Sterilization?

William A. Rutala, PhD, MPH; David J. Weber, MD, MPH

More than 10 million gastrointestinal endoscopic procedures are performed annually in the United States for diagnostic purposes, therapeutic interventions, or both. Because gastrointestinal endoscopes contact mucosal surfaces, use of a contaminated endoscope may lead to patient-to-patient transmission of potential pathogens with a subsequent risk of infection.

In this issue of JAMA, Epstein and colleagues report findings from their investigation of a cluster of New Delhi metallo-β-lactamase (NDM)–producing Escherichia coli associated with gastrointestinal endoscopy that occurred from March 2013 to July 2013 in a single hospital in northeastern Illinois. During the 5-month period, 9 patients were identified with NDM-E. coli infection. Of these, 5 transmitted the infection to other patients. Each patient had undergone gastrointestinal endoscopy in the hospital within 24 hours of the last identified case, and all the clusters of infection were linked to contaminated endoscopes. No other sources of infection were identified. In the hospital, all gastrointestinal endoscopes are cleaned and disinfected in a cold, propylene glycol-based solution. It is not clear whether this procedure was adequate to prevent transmission of NDM-E. coli. However, one of the patients whose infection was linked to contaminated endoscopes had received an endoscopic procedure 7 days before developing infection, suggesting that endoscopic equipment was not being adequately disinfected. No appropriate policy to address the problem was identified.

First, endoscopes are semicritical devices, which contact mucous membranes or nonintact skin, and require at least high-level disinfection. High-level disinfection achieves complete elimination of all microorganisms, except for small numbers of bacterial spores. Because flexible gastrointestinal endoscopic instruments are heat labile, only high-level disinfection with chemical agents or low-temperature sterilization technologies are possible. However, no low-temperature sterilization technology is US Food and Drug Administration (FDA)-cleared for gastrointestinal endoscopes such as duodenoscopes.

Second, more health care–associated outbreaks and clusters of infection have been linked to contaminated endoscopes than to any other medical device. However, until now,
What Is the Public Health Benefit?
No ERCP-Related Infections

Margin of Safety—currently nonexistent; sterilization will provide a safety margin (~6 log$_{10}$). To prevent infections, all duodenoscopes should be devoid of microbial contamination.

HLD (6 log$_{10}$ reduction)

vs

Sterilization (12 log$_{10}$ reduction=SAL 10$^{-6}$)
FDA Panel, May 2015, Recommended
Sterilization of Duodenoscopes
(requires FDA-cleared sterilization technology that achieves a SAL 10^{-6}, technology not yet available)
Evidence-Based Recommendation for Sterilization of Endoscopes

(FDA Panel Recommendation for Duodenoscopes, May 2015; more peer-reviewed publications (>150) for the need for shifting from disinfection to sterilization than any other recommendation of AAMI, CDC [HICPAC], SHEA, APIC, SGNA, ASGE)

>130 plus endoscope-related outbreaks

GI endoscope contamination rates of 20-40% after HLD

Scope commonly have disruptive/irregular surfaces

>50,000 patient exposures involving HLD
Where are we?
Potential Future Methods to Prevent Endoscope-Related Outbreaks


- Optimize current low temperature sterilization methods or new LTST proving SAL $10^{-6}$ achieved (2 LTS technologies, FDA-cleared)
- Disposable sterile GI endoscopes/bronchoscopes (3 manufacturer’s)
- Steam sterilization for GI endoscopes (1 bronchoscope manufacturer)
- Use of non-endoscope methods to diagnosis or treat disease (e.g., capsule endoscopy, stool or blood tests to detect GI cancer, stool DNA test)
- Improved GI endoscopy design (to reduce or eliminate reprocessing challenges-based on 50y of experience unlikely to resolve problem; closed channel duodenoscopes increased risk)
Endoscope Reprocessing: What Can We Do To Prevent Infections?

Summary

- Endoscopes represent a significant nosocomial hazard for healthcare-associated infections. Narrow or nonexistent margin of safety associated with high-level disinfection of semicritical items due to microbial load, complexity in design and formation of biofilms.
- To protect the public health and prevent endoscopy-related (e.g., ERCP, bronchoscopes) outbreaks, there is an urgent need to shift from HLD to sterilization.
- Professional organizations should clarify the Spaulding classification to require sterilization of endoscopes that directly or indirectly (duodenoscope, cystoscope) enter normally sterile tissue.
- Industry must develop sterilization technology (or single use) and make endoscopes compatible
- FDA must support this change through mandates and regulatory guidance
- TJC/CMS must enforce this transition when technology is acceptable
- Professional organizations (APIC, SHEA, ASGE, SGNA, AORN, IAHCSMM, AUA, ATS) must facilitate this change (e.g., guidelines, research, user education, presentations at meetings)
- Only after transition from HLD to sterilization for endoscopes that contact sterile tissue will we prevent all healthcare-associated infections associated with these medical devices.
Duodenoscopes and Endoscopy Reprocessing: A Need to Shift from Disinfection to Sterilization

- Sources of healthcare-associated pathogens
- Evaluate the cause of endoscope-related outbreaks
- Review the outbreaks associated with ERCP and endoscopic procedures
- Discuss the alternatives that exist today that might improve the safety margin associated with duodenoscope/endoscope reprocessing
- Describe how to prevent future outbreaks associated with duodenoscopes and other endoscopes