Environmental Strategies to Reduce Infections

William A. Rutala, PhD, MPH
Director, Hospital Epidemiology, Occupational Health and Safety; Professor of Medicine and Director, Statewide Program for Infection Control and Epidemiology
University of North Carolina at Chapel Hill and UNC Health Care,
Chapel Hill, NC

Disclosure: Clorox
Environmental Strategies to Reduce Infections

- Environmental Infection Control
 - Reprocessing reusable medical/surgical instruments
 - Hospital surfaces
 - Water

- Identify at least four ways infection prevention activities can reduce the contribution of the environment to HAIs
disinfectionandsterilization.org
Environmental Strategies to Reduce Infections

• Environmental Infection Control
 - Reprocessing reusable medical/surgical instruments
 - Hospital surfaces
 - Water

• Identify at least four ways infection prevention activities can reduce the contribution of the environment to HAIs
EH Spaulding believed that how an object will be disinfected depended on the object’s intended use.

- **CRITICAL** - objects which enter normally sterile tissue or the vascular system or through which blood flows should be sterile.

- **SEMICRITICAL** - objects that touch mucous membranes or skin that is not intact require a disinfection process (high-level disinfection [HLD]) that kills all microorganisms but high numbers of bacterial spores.

- **NONCRITICAL** - objects that touch only intact skin require low-level disinfection.
Newer Trends in Sterilization of Patient Equipment

- Alternatives to ETO-CFC
 - ETO-CO$_2$, ETO-HCFC, 100% ETO
- New Low Temperature Sterilization Technology
 - Hydrogen peroxide gas plasma-most common
 - Vaporized hydrogen peroxide-limited clinical use
 - Ozone and hydrogen peroxide-not FDA cleared
 - Nitrogen dioxide-not FDA cleared
Rapid Readout BiTs for Steam Now Require a 1-3h Readout Compared to 24-48h

COMPARISON OF A RAPID READOUT BIOLOGICAL INDICATOR FOR STEAM STERILIZATION WITH FOUR CONVENTIONAL BIOLOGICAL INDICATORS AND FIVE CHEMICAL INDICATORS

William A. Rutala, PhD, MPH; Suzanne M. Jones, MPH; David J. Weber, MD, MPH
Super Rapid Readout Biological Indicators
Commercially available in early 2013

1491 BI (blue cap)
- Monitors 270°F and 275°F gravity –displacement steam sterilization cycles
- 30 minute result (from 1 hour)

1492V BI (brown cap)
- Monitors 270°F and 275°F dynamic-air-removal (pre-vacuum) steam sterilization cycles
- 1 hour result (from 3 hours)
DISINFECTION AND STERILIZATION

• EH Spaulding believed that how an object will be disinfected depended on the object’s intended use

 ■ **CRITICAL** - objects which enter normally sterile tissue or the vascular system or through which blood flows should be sterile

 ■ **SEMICRITICAL** - objects that touch mucous membranes or skin that is not intact require a disinfection process (high-level disinfection\[HLD\]) that kills all microorganisms but high numbers of bacterial spores

 ■ **NONCRITICAL** - objects that touch only intact skin require low-level disinfection
High-Level Disinfection of “Semicritical Objects”

Exposure Time $\geq 8\text{m-45m (US), 20}^\circ\text{C}$

<table>
<thead>
<tr>
<th>Germicide</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glutaraldehyde</td>
<td>$> 2.0%$</td>
</tr>
<tr>
<td>Ortho-phthalaldehyde</td>
<td>$0.55%$</td>
</tr>
<tr>
<td>Hydrogen peroxide*</td>
<td>$7.5%$</td>
</tr>
<tr>
<td>Hydrogen peroxide and peracetic acid*</td>
<td>$1.0%/0.08%$</td>
</tr>
<tr>
<td>Hydrogen peroxide and peracetic acid*</td>
<td>$7.5%/0.23%$</td>
</tr>
<tr>
<td>Hypochlorite (free chlorine)*</td>
<td>$650-675 \text{ ppm}$</td>
</tr>
<tr>
<td>Accelerated hydrogen peroxide</td>
<td>$2.0%$</td>
</tr>
<tr>
<td>Peracetic acid</td>
<td>$0.2%$</td>
</tr>
<tr>
<td>Glut and isopropanol</td>
<td>$3.4%/26%$</td>
</tr>
<tr>
<td>Glut and phenol/phenate**</td>
<td>$1.21%/1.93%$</td>
</tr>
</tbody>
</table>

*May cause cosmetic and functional damage; **efficacy not verified
Semicritical Equipment

- Reprocessing semicritical items has been shown to have a narrow margin of safety.
- Generally, the narrow margin of safety attributed to high microbial load and complex instruments with lumens.
- Any deviation from the recommended reprocessing protocol can lead to the survival of microorganisms and an increased risk of infection.
- Problems encountered with reprocessing semicritical equipment often related to improper cleaning.
Reprocessing Semicritical Items

- New Developments in Reprocessing
 - Endoscopes
 - Laryngoscopes
 - Infrared coagulation device
 - Nasopharyngoscopes
 - Endocavitary probe
 - Prostate biopsy probes
 - Tonometers
Effectiveness of Endoscope Reprocessing
Infect Control Hosp Epidemiol 2013;34:309

- Practice of reprocessing endoscopes and effectiveness evaluated in 37 services (Brazil)
 - Contamination of at least 1 scope identified in 34 (96%) of 37 services
 - Bacteria, fungi and/or mycobacteria isolated from 84.6% (33/39) of the colonoscopes (110-32,000CFU/ml) and from 80.6% (50/62) of the gastroscopes (100-33,000CFU/ml)
 - Not all services followed guidelines; patients were exposed to diverse pathogens
Multisociety Guideline on Reprocessing Flexible GI Endoscopes: 2011

The beneficial role of GI endoscopy for the prevention, diagnosis, and treatment of many digestive diseases and cancer is well established. Like many sophisticated medical devices, the endoscope is a complex, reusable instrument that requires reprocessing before being used on subsequent patients. The most commonly used methods for reprocessing endoscopes result in high-level disinfection. To date, all published occurrences of pathogen transmission related to GI endoscopy have been associated with failure to follow established cleaning and disinfection/sterilization guidelines or use of defective equipment. Despite the strong published data regarding the safety of endoscope reprocessing, concern over the potential spread gaps in infection prevention practices. Given the ongoing occurrences of endoscopy-associated infections attributed to lapses in infection prevention, an update of the multisociety guideline is warranted.

This document provides an update of the previous guideline, with additional discussion of new or evolving reprocessing issues and updated literature citations, where appropriate. Specific additions or changes include review of expanded details related to critical reprocessing steps (including cleaning and drying), reprocessing issues for various endoscope attachments such as flushing catheters, discussion of risks related to selected periprocedural practices including...
Multi-Society Guideline for Reprocessing Flexible Gastrointestinal Endoscopes, 2011

• Since 2003, changes in
 ■ High-level disinfectants
 ■ Automated endoscope reprocessors- one AER with cleaning claim
 ■ Endoscopes
 ■ Endoscopic accessories

• However, efficacy of decontamination and high-level disinfection is unchanged and the principles guiding both remain valid

• Additional outbreaks of infection related to suboptimal infection prevention practices during endoscopy or lapses in endoscope reprocessing (unfamiliarity with endoscope channels, accessories, attachments; gaps in infection prevention at ASC; care of intravenous lines and administration of anesthesia or other medications (reuse of needles and syringes, multidose vials)
Reprocessing of Rigid Laryngoscopes

• Limited guidelines for reprocessing laryngoscope’s blades and handles
• Many hospitals consider blade as semicritical (HLD) and handle as noncritical (LLD)
• Blades linked to HAIs; handles not directly linked to HAIs but contamination with blood/OPIM suggest its potential and blade and handle function together
• Ideally, clean then HLD/sterilize blades and handles (UNCHC-blades wrapped in a tray-Sterrad; handle wrapped in tray [without batteries]-steam); the blades and handles placed together in a Ziploc bag. Blades and handles checked for function prior to packaging.
Contamination of Laryngoscope Handles

J Hosp Infect 2010;74:123

- 55/64 (86%) of the handles deemed “ready for patient use” positive for HA pathogens (S. aureus, enterococci, Klebsiella, Acinetobacter)

Anesth Analg 2009;109:479

- 30/40 (75%) samples from handles positive (CONS, Bacillus, Streptococcus, S. aureus, Enterococcus) after cleaning

AANA J 1997;65:241

- 26/65 (40%) of the handles and 13/65 (20%) of the blades were positive for occult blood. These blades and handles were identified as ready for patient use.
ADULT
LARYNGOSCOPE SET
DO NOT DISCARD REUSABLE
PLACE ALL CONTENTS OF BAG
IN GREEN TUBS IN DIRTY
UTILITY ROOM
How should we process and store laryngoscope blades?

- Processed via sterilization or HLD
- Packaged in some way
- Stored in a way that prevents recontamination. Examples of compliant storage include, but are not limited to, a peel pack post steam sterilization (long-term) or wrapping in a sterile towel (short term)
- Should not place unwrapped blades in an anesthesia drawer
EH Spaulding believed that how an object will be disinfected depended on the object’s intended use:

- **CRITICAL** - objects which enter normally sterile tissue or the vascular system or through which blood flows should be sterile.

- **SEMICRITICAL** - objects that touch mucous membranes or skin that is not intact require a disinfection process (high-level disinfection [HLD]) that kills all microorganisms but high numbers of bacterial spores.

- **NONCRITICAL** - objects that touch only intact skin require low-level disinfection.
Low-Level Disinfection for Noncritical Equipment and Surfaces

Exposure time > 1 min

<table>
<thead>
<tr>
<th>Germicide</th>
<th>Use Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethyl or isopropyl alcohol</td>
<td>70-90%</td>
</tr>
<tr>
<td>Chlorine</td>
<td>100ppm (1:500 dilution)</td>
</tr>
<tr>
<td>Phenolic</td>
<td>UD</td>
</tr>
<tr>
<td>Iodophor</td>
<td>UD</td>
</tr>
<tr>
<td>Quaternary ammonium</td>
<td>UD</td>
</tr>
<tr>
<td>Improved hydrogen peroxide (HP)</td>
<td>0.5%, 1.4%</td>
</tr>
</tbody>
</table>

UD = Manufacturer’s recommended use dilution
IMPROVED HYDROGEN PEROXIDE (HP) SURFACE DISINFECTANT

• Advantages
 ■ 30 sec - 1 min bactericidal and virucidal claim (fastest non-bleach contact time)
 ■ 5 min mycobactericidal claim
 ■ Safe for workers (lowest EPA toxicity category, IV)
 ■ Benign for the environment; noncorrosive; surface compatible
 ■ One step cleaner-disinfectant
 ■ No harsh chemical odor
 ■ EPA registered (0.5% RTU, 1.4% RTU, wet wipe)

• Disadvantages
 ■ More expensive than QUAT
BACTERICIDAL ACTIVITY OF DISINFECTANTS (log_{10} reduction) WITH A CONTACT TIME OF 1m WITH/WITHOUT FCS. Rutala et al. ICHE. 2012;33:1159

Improved hydrogen peroxide is significantly superior to standard HP at same concentration and superior or similar to the QUAT tested.

<table>
<thead>
<tr>
<th>Organism</th>
<th>IHP-0.5%</th>
<th>0.5% HP</th>
<th>IHP Cleaner-Dis 1.4%</th>
<th>1.4% HP</th>
<th>3.0% HP</th>
<th>QUAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRSA</td>
<td>>6.6</td>
<td><4.0</td>
<td>>6.5</td>
<td><4.0</td>
<td><4.0</td>
<td>5.5</td>
</tr>
<tr>
<td>VRE</td>
<td>>6.3</td>
<td><3.6</td>
<td>>6.1</td>
<td><3.6</td>
<td><3.6</td>
<td>4.6</td>
</tr>
<tr>
<td>MDR-Ab</td>
<td>>6.8</td>
<td><4.3</td>
<td>>6.7</td>
<td><4.3</td>
<td><4.3</td>
<td>>6.8</td>
</tr>
<tr>
<td>MRSA, FCS</td>
<td>>6.7</td>
<td>NT</td>
<td>>6.7</td>
<td>NT</td>
<td><4.2</td>
<td><4.2</td>
</tr>
<tr>
<td>VRE, FCS</td>
<td>>6.3</td>
<td>NT</td>
<td>>6.3</td>
<td>NT</td>
<td><3.8</td>
<td><3.8</td>
</tr>
<tr>
<td>MDR-Ab, FCS</td>
<td>>6.6</td>
<td>NT</td>
<td>>6.6</td>
<td>NT</td>
<td><4.1</td>
<td>>6.6</td>
</tr>
</tbody>
</table>
"The patient in the next bed is highly infectious. Thank God for these curtains."
Hospital Privacy Curtains
(pre- and post-intervention study; sampled curtain, sprayed “grab area” 3x from 6-8” with 1.4% IHP and allowed 2 minute contact; sampled curtain)
Decontamination of Curtains with Activated HP (1.4%)

<table>
<thead>
<tr>
<th>CP for:</th>
<th>Before Disinfection CFU/5 Rodacs (#Path)</th>
<th>After Disinfection CFU/5 Rodacs (#Path)</th>
<th>% Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRSA</td>
<td>330 (10 MRSA)</td>
<td>21* (0 MRSA)</td>
<td>93.6%</td>
</tr>
<tr>
<td>MRSA</td>
<td>186 (24 VRE)</td>
<td>4* (0 VRE)</td>
<td>97.9%</td>
</tr>
<tr>
<td>MRSA</td>
<td>108 (10 VRE)</td>
<td>2* (0 VRE)</td>
<td>98.2%</td>
</tr>
<tr>
<td>VRE</td>
<td>75 (4 VRE)</td>
<td>0 (0 VRE)</td>
<td>100%</td>
</tr>
<tr>
<td>VRE</td>
<td>68 (2 MRSA)</td>
<td>2* (0 MRSA)</td>
<td>97.1%</td>
</tr>
<tr>
<td>VRE</td>
<td>98 (40 VRE)</td>
<td>1* (0 VRE)</td>
<td>99.0%</td>
</tr>
<tr>
<td>MRSA</td>
<td>618 (341 MRSA)</td>
<td>1* (0 MRSA)</td>
<td>99.8%</td>
</tr>
<tr>
<td>MRSA</td>
<td>55 (1 VRE)</td>
<td>0 (0 MRSA)</td>
<td>100%</td>
</tr>
<tr>
<td>MRSA, VRE</td>
<td>320 (0 MRSA, 0 VRE)</td>
<td>1* (0 MRSA, 0 VRE)</td>
<td>99.7%</td>
</tr>
<tr>
<td>MRSA</td>
<td>288 (0 MRSA)</td>
<td>1* (0 MRSA)</td>
<td>99.7%</td>
</tr>
<tr>
<td>Mean</td>
<td>2146/10=215 (432/10=44)</td>
<td>33*/10=3 (0)</td>
<td>98.5%</td>
</tr>
</tbody>
</table>

* All isolates after disinfection were Bacillus sp; now treat CP patient curtains at discharge with IHP.
Environmental Strategies to Reduce Infections

• Environmental Infection Control
 - Reprocessing reusable medical/surgical instruments
 - Hospital surfaces
 - Water

• Identify at least four ways infection prevention activities can reduce the contribution of the environment to HAIs
TRANSMISSION MECHANISMS INVOLVING THE SURFACE ENVIRONMENT

TRANSMISSION MECHANISMS INVOLVING THE SURFACE ENVIRONMENT

ENVIRONMENTAL CONTAMINATION

ENDEMIC AND EPIDEMIC MRSA

<table>
<thead>
<tr>
<th></th>
<th>Outbreak</th>
<th>Endemic</th>
<th>Site estimated mean$^\text{§}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rampling et al$^\text{2*}$</td>
<td>Boyce et al$^\text{4**}$</td>
<td>Sexton et al$^\text{8†}$</td>
</tr>
<tr>
<td>Floor</td>
<td>9%</td>
<td>50–55%</td>
<td>44–60%</td>
</tr>
<tr>
<td>Bed linen</td>
<td>..</td>
<td>38–54%</td>
<td>44%</td>
</tr>
<tr>
<td>Patient gown</td>
<td>..</td>
<td>40–53%</td>
<td>..</td>
</tr>
<tr>
<td>Overbed table</td>
<td>..</td>
<td>18–42%</td>
<td>64–67%</td>
</tr>
<tr>
<td>Blood pressure cuff</td>
<td>13%</td>
<td>25–33%</td>
<td>..</td>
</tr>
<tr>
<td>Bed or siderails</td>
<td>5%</td>
<td>1–30%</td>
<td>44–60%</td>
</tr>
<tr>
<td>Bathroom door handle</td>
<td>8–24%</td>
<td>12%†</td>
<td>..</td>
</tr>
<tr>
<td>Infusion pump button</td>
<td>13%</td>
<td>7–18%</td>
<td>..</td>
</tr>
<tr>
<td>Room door handle</td>
<td>11%</td>
<td>4–8%</td>
<td>..</td>
</tr>
<tr>
<td>Furniture</td>
<td>11%</td>
<td>..</td>
<td>44–59%</td>
</tr>
<tr>
<td>Flat surfaces</td>
<td>7%</td>
<td>..</td>
<td>32–38%</td>
</tr>
<tr>
<td>Sink taps or basin fitting</td>
<td>..</td>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>Average quoted**</td>
<td>11%</td>
<td>27%</td>
<td>49%</td>
</tr>
</tbody>
</table>

FREQUENCY OF ACQUISITION OF MRSA ON GLOVED HANDS AFTER CONTACT WITH SKIN AND ENVIRONMENTAL SITES

No significant difference on contamination rates of gloved hands after contact with skin or environmental surfaces (40% vs 45%; p=0.59)

ACQUISITION OF MRSA ON HANDS AFTER CONTACT WITH ENVIRONMENTAL SITES
TRANSFER OF MRSA FROM PATIENT OR ENVIRONMENT TO IV DEVICE AND TRANSMISSION OF PATHOGEN
TRANSMISSION MECHANISMS INVOLVING THE SURFACE ENVIRONMENT

ACQUISITION OF *C. difficile* ON PATIENT HANDS AFTER CONTACT WITH ENVIRONMENTAL SITES AND THEN INOCULATION OF MOUTH
FACTORS LEADING TO ENVIRONMENTAL TRANSMISSION OF CLOSTRIDIUM DIFFICILE

• Stable in the environment
• Low inoculating dose
• Common source of infectious gastroenteritis
• Frequent contamination of the environment
• Susceptible population (limited immunity)
• Relatively resistant to disinfectants
C. difficile Environmental Contamination

- Frequency of sites found contaminated~10->50% from 13 studies-stethoscopes, bed frames/rails, call buttons, sinks, hospital charts, toys, floors, windowsills, commodes, toilets, bedsheets, scales, blood pressure cuffs, phones, door handles, electronic thermometers, flow-control devices for IV catheter, feeding tube equipment, bedpan hoppers

- C. difficile spore load is low-7 studies assessed the spore load and most found <10 colonies on surfaces found to be contaminated. Two studies reported >100; one reported a range of “1->200” and one study sampled several sites with a sponge and found 1,300 colonies C. difficile.
Thoroughness of Environmental Cleaning
Carling et al. ECCMID, Milan, Italy, May 2011

DAILY CLEANING
TERMINAL CLEANING

Mean = 32%

>110,000 Objects

| = 95 % CI
EVALUATION OF HOSPITAL ROOM ASSIGNMENT AND ACQUISITION OF CDI

- Study design: Retrospective cohort analysis, 2005-2006
- Setting: Medical ICU at a tertiary care hospital
- Methods: All patients evaluated for diagnosis of CDI 48 hours after ICU admission and within 30 days after ICU discharge
- Results (acquisition of CDI)
 - Admission to room previously occupied by CDI = 11.0%
 - Admission to room not previously occupied by CDI = 4.6% (p=0.002)

Shaughnessy MK, et al. ICHE 2011;32:201-206

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>HR (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior room occupant with CDI</td>
<td>2.35 (1.21-4.54)</td>
<td>.01</td>
</tr>
<tr>
<td>Greater age</td>
<td>1.00 (0.99-1.01)</td>
<td>.71</td>
</tr>
<tr>
<td>Higher APACHE III score</td>
<td>1.00 (1.00-1.01)</td>
<td>.06</td>
</tr>
<tr>
<td>Proton pump inhibitor use</td>
<td>1.11 (0.44-2.78)</td>
<td>.83</td>
</tr>
<tr>
<td>Antibiotic exposure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norfloxacin</td>
<td>0.38 (0.05-2.72)</td>
<td>.33</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>1.08 (0.67-1.73)</td>
<td>.75</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>0.49 (0.15-1.67)</td>
<td>.23</td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td>1.17 (0.72-1.91)</td>
<td>.53</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>0.45 (0.14-1.42)</td>
<td>.17</td>
</tr>
<tr>
<td>Third- or fourth-generation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cephalosporins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbapenems</td>
<td>1.05 (0.63-1.75)</td>
<td>.84</td>
</tr>
<tr>
<td>Piperacillin-tazobactam</td>
<td>1.31 (0.82-2.10)</td>
<td>.27</td>
</tr>
<tr>
<td>Other penicillin</td>
<td>0.47 (0.23-0.98)</td>
<td>.04</td>
</tr>
<tr>
<td>Metronidazole</td>
<td>1.31 (0.83-2.07)</td>
<td>.24</td>
</tr>
<tr>
<td>Vancomycin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral</td>
<td>1.38 (0.32-5.89)</td>
<td>.67</td>
</tr>
<tr>
<td>Intravenous</td>
<td>1.55 (0.88-2.73)</td>
<td>.13</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td>1.27 (0.78-2.06)</td>
<td>.35</td>
</tr>
<tr>
<td>Multiple (≥3 antibiotic classes)</td>
<td>1.28 (0.75-2.21)</td>
<td>.37</td>
</tr>
</tbody>
</table>

NOTE. APACHE, Acute Physiology and Chronic Health Evaluation; CI, confidence interval; HR, hazard ratio.
ALL “TOUCHABLE” (HAND CONTACT) SURFACES SHOULD BE WIPED WITH SPORICIDE

“High touch” objects only recently defined (no significant differences in microbial contamination of different surfaces) and “high risk” objects not epidemiologically defined.
C. difficile spores
Disinfectants and Antisepsis

C. difficile spores at 10 and 20 min, Rutala et al, 2006

- ~4 log$_{10}$ reduction (3 C. difficile strains including BI-9)
 - Bleach, 1:10, ~6,000 ppm chlorine (but not 1:50)
 - Chlorine product, ~19,100 ppm chlorine
 - Chlorine product, ~25,000 ppm chlorine
 - 0.35% peracetic acid
 - 2.4% glutaraldehyde
 - OPA, 0.55% OPA
 - 2.65% glutaraldehyde
 - 3.4% glutaraldehyde and 26% alcohol
SURFACE DISINFECTION

Effectiveness of Different Methods

<table>
<thead>
<tr>
<th>Technique (with cotton)</th>
<th>C. difficile Log$_{10}$ Reduction (1:10 Bleach)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturated cloth</td>
<td>3.90</td>
</tr>
<tr>
<td>Spray (10s) and wipe</td>
<td>4.48</td>
</tr>
<tr>
<td>Spray, wipe, spray (1m), wipe</td>
<td>4.48</td>
</tr>
<tr>
<td>Spray</td>
<td>3.44</td>
</tr>
<tr>
<td>Spray, wipe, spray (until dry)</td>
<td>4.48</td>
</tr>
<tr>
<td>5500 ppm chlorine pop-up wipe</td>
<td>3.98</td>
</tr>
<tr>
<td>Non-sporicidal wipe</td>
<td>≥ 2.9</td>
</tr>
</tbody>
</table>

Rutala, Gergen, Weber. ICHE, In press
REDUCTION IN CDI INCIDENCE WITH ENHANCED (DAILY AND TERMINAL) ROOM DISINFECTION

- Before-after study of CDI incidence rates in two hyperendemic wards at a 1,249 bed hospital
- Intervention: Change from cleaning rooms with QUAT to bleach wipes (0.55% Cl) for both daily and terminal disinfection
- Results: CDI incidence dropped 85% from 24.2 to 3.6 cases per 10,000 pt-days (p<0.001); prolonged median time between HA CDI from 8 to 80 days

Orenstein R, et al
ICHE 2011;32:1137
Daily disinfection of high-touch surfaces (vs standard-cleaned when soiled) with sporicidal disinfectant in rooms of patients with CDI and MRSA reduced acquisition of pathogens on gloved hands after contact with surfaces.

Figure 1. Effect of daily disinfection of high-touch environmental surfaces on acquisition of *Clostridium difficile* and methicillin-resistant *Staphylococcus aureus* (MRSA) on gloved hands of investigators after contact with the surfaces. A, Percentage of positive *C. difficile* cultures; B, mean number of *C. difficile* colony-forming units acquired; C, percentage of positive MRSA cultures; D, mean number of MRSA colony-forming units acquired.
CONTROL MEASURES
C. difficile Disinfection

- In units with high endemic *C. difficile* infection rates or in an outbreak setting, use dilute solutions of 5.25-6.15% sodium hypochlorite (e.g., 1:10 dilution of bleach) for routine disinfection. (Category II).

- We now use sporicidal solution (chlorine, not floors) in all CDI rooms for routine daily and terminal cleaning (formerly used QUAT in patient rooms with sporadic CDI). One application of an effective product covering all “touchable” surfaces to allow a sufficient wetness for > 1 minute contact time. Chlorine solution normally takes 1-3 minutes to dry.

- For semicritical equipment, glutaraldehyde (20m), OPA (12m) and peracetic acid (12m) reliably kills *C. difficile* spores using normal exposure times.
Thoroughness of Environmental Cleaning
Carling et al. ECCMID, Milan, Italy, May 2011

Mean = 32%

>Daily Cleaning
Terminal Cleaning

| = 95% CI

>110,000 Objects

DAILY CLEANING
TERMINAL CLEANING

HEHSG HOSP
IOWA HOSP
OTHER HOSP
OPERATING ROOMS
NICU
EMS VEHICLES
ICU DAILY
AMB CHEMO
MD CLINIC
LONG TERM
DIALYSIS

% Cleaned

0 20 40 60 80 100

36 85 16 Sites 7 Sites 7 Sites 7 Sites 4 Sites 4 Sites 9 Sites 4 Sites

Objects

>110,000

Mean = 32%
ENVIRONMENTAL CONTAMINATION LEADS TO HAIs

Suboptimal Cleaning

• There is increasing evidence to support the contribution of the environment to disease transmission

• This supports comprehensive disinfecting regimens (goal is not sterilization) to reduce the risk of acquiring a pathogen from the healthcare environment
• Visual assessment - not a reliable indicator of surface cleanliness

• ATP bioluminescence - measures organic debris (each unit has own reading scale, <250-500 RLU)

• Microbiological methods - <2.5 CFUs/cm² - pass; can be costly and pathogen specific

• Fluorescent marker
TERMINAL ROOM CLEANING: DEMONSTRATION OF IMPROVED CLEANING

- Evaluated cleaning before and after an intervention to improve cleaning
- 36 US acute care hospitals
- Assessed cleaning using a fluorescent dye
- Interventions
 - Increased education of environmental service workers
 - Feedback to environmental service workers
 - Regularly change “dotted” items to prevent targeting objects

Carling PC, et al. ICHE 2008;29:1035-41
NEW “NO TOUCH” APPROACHES TO ROOM DECONTAMINATION
Supplement Surface Disinfection
TABLE I. Comparison of Room Decontamination Systems That Use UV Irradiation and Hydrogen Peroxide (HP)

<table>
<thead>
<tr>
<th></th>
<th>Sterinis</th>
<th>Steris</th>
<th>Bioquell</th>
<th>Tru-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>DMHP (dry mist HP)</td>
<td>VHP (vaporized HP)</td>
<td>HPV (HP vapor)</td>
<td>UV-C</td>
</tr>
<tr>
<td>Active agent</td>
<td>Stenasil (5% HP, <50 ppm silver cations)</td>
<td>Vaprox (35% HP)</td>
<td>35% HP</td>
<td>UV-C irradiation at 254 nm</td>
</tr>
<tr>
<td>Application</td>
<td>Aerosol of active solution</td>
<td>Vapor, noncondensing</td>
<td>Vapor, condensing</td>
<td>UV irradiation, direct and reflected</td>
</tr>
<tr>
<td>Aeration (removal of active agent from enclosure)</td>
<td>Passive decomposition</td>
<td>Active catalytic conversion</td>
<td>Active catalytic conversion</td>
<td>Not necessary</td>
</tr>
<tr>
<td>Sporicidal efficacy</td>
<td>Single cycle does not inactivate Bacillus atrophaeus BIs; 4-log_{10} reduction in Clostridium difficile and incomplete inactivation in situ</td>
<td>Inactivation of Geobacillus stearothermophilus BIs</td>
<td>Inactivation of G. stearothermophilus BIs; >6-log_{10} reduction in C. difficile in vitro and complete inactivation in situ</td>
<td>1.7–4-log_{10} reduction in C. difficile in situ</td>
</tr>
<tr>
<td>Evidence of clinical impact</td>
<td>None published</td>
<td>None published</td>
<td>Significant reduction in the incidence of C. difficile</td>
<td>None published</td>
</tr>
</tbody>
</table>

Note. Adapted from Otter and Yezi. BIs, biological indicators; VRE, vancomycin-resistant *Enterococcus*.

* All *C. difficile* experiments were done with *C. difficile* spores.
ROOM DECONTAMINATION WITH UV, HP

• Issues - Room decontamination time; where the occupancy is high and fast patient turnaround time is critical
 - Room decontamination with UV is 15-25 minutes for vegetative bacteria and 50 minutes for C. difficile spores
 - HP room decontamination takes approximately 2.5 hours
Rapid Hospital Room Decontamination Using UV Light With a Nanostructured Reflective Coating

• Assessed the time required to kill HAI pathogens in a room with standard white paint (3-7% UV reflective) versus walls coated with an agent formulated to be reflective to UV-C wavelengths (65% UV reflective)

• Coating/painted uses nanoscale metal oxides whose crystal structures are reflective to UV-C

• Coating is white in appearance and can be applied with a brush or roller in the same way as any common interior latex paint

• Cost to coat walls used in this study was estimated to be <$300.
With the nanoscale reflective coating, cycle times were 5-10m (~80% reduction) which would substantially reduce the turnover time of the room.

<table>
<thead>
<tr>
<th>Line-of-Sight</th>
<th>MRSA w/coating</th>
<th>MRSA no coating</th>
<th>C. difficile w/coating</th>
<th>C. difficile no coating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle Time</td>
<td>5m03s</td>
<td>25m13s</td>
<td>9m24s</td>
<td>43m42s</td>
</tr>
<tr>
<td>Direct</td>
<td>4.70 (n=42)</td>
<td>4.72 (n=33)</td>
<td>3.28 (n=39)</td>
<td>3.42 (n=33)</td>
</tr>
<tr>
<td>Indirect</td>
<td>4.45 (n=28)</td>
<td>4.30 (n=27)</td>
<td>2.42 (n=31)</td>
<td>2.01 (n=27)</td>
</tr>
<tr>
<td>Total</td>
<td>4.60 (n=70)</td>
<td>4.53 (n=60)</td>
<td>2.91 (n=70)</td>
<td>2.78 (n=60)</td>
</tr>
</tbody>
</table>
SELF DISINFECTING SURFACES

• Surface impregnated with a “heavy” metal
 - Silver
 - Copper

• Surface impregnated with a germicide
 - Triclosan
 - Antimicrobial surfactant/quaternary ammonium salt?
 - Organosilane products?

• Altered topography
 - Sharklet pattern

• Light-activated antimicrobial coating

Weber DJ, Rutala WA. ICHE 2012;33:10-13
SELF DISINFECTING SURFACES

Copper coated overbed table

Antimicrobial effects of silver

Sharklet Pattern

Triclosan pen
Enhancing Patient Safety Through Copper Surfaces
M Schmidt et al. IFIC, October 2012

- Three hospital (NY, SC) study to evaluate the potential value (reduced bacterial burden, HAI s) of antimicrobial copper applied to 6 touch surfaces in ICUs
- 83% reduction in bacterial burden
- Significant decrease in the incidence of HAI/colonization by MRSA and VRE
- Warrants further consideration when published to fully appreciate the potential benefit and optimization of the risk reduction
Environmental Strategies to Reduce Infections

• Environmental Infection Control
  Reprocessing reusable medical/surgical instruments
  Hospital surfaces
  Water

• Identify at least four ways infection prevention activities can reduce the contribution of the environment to HAIs
Water and Healthcare
Multiple Uses
Water-Related Pathogens and Their Disease Transmission Pathways

Exner et al. AJIC 33:S26-40; 2005

Ingestion (Drinking)

Inhalation and aspiration (Aerosols)

Contact (Bathing)

Route of infection (Sepsis and generalized infection may occur)

Gastrointestinal

Respiratory

Skin (especially if abraded), mucous membranes, wounds, eyes

Bacteria
- Campylobacter spp.
- E. coli
- Salmonella spp.
- Shigella spp.
- Vibrio cholerae
- Yersinia spp.

Viruses
- Adenovirus
- Astrovirus
- Enteroviruses
- Hepatitis A virus
- Hepatitis E virus
- Noroviruses
- Rotaviruses
- Sapovirus

Protozoa and helminths
- Cryptosporidium parvum
- Dracunculus medinensis
- Entamoeba histolytica
- Giardia intestinalis
- Toxoplasma gondii

Legionella pneumophila
- Mycobacteria (non-tuberculous)
- Naegleria fowleri
- Diverse viral infections
- Many other agents in high-exposure situations

Acanthamoeba spp.
- Aeromonas spp.
- Burkholderia pseudomallei
- Mycobacteria (non-tuberculous)
- Leptospira spp.*
- Pseudomonas aeruginosa
- Schistosoma mansoni*

* Primarily from contact with highly contaminated surface waters.
WATER RESERVOIRS

Rutala, Weber. ICHE 1997;18:609

TABLE
Water as a Reservoir of Nosocomial Pathogens

<table>
<thead>
<tr>
<th>Reservoir</th>
<th>Associated Pathogen(s)</th>
<th>Transmission</th>
<th>Importance</th>
<th>Prevention and Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potable water</td>
<td>Pseudomonas, Mycobacteria, Legionella</td>
<td>Contact</td>
<td>Moderate</td>
<td>Follow public health guidelines</td>
</tr>
<tr>
<td>Sinks</td>
<td>Pseudomonas</td>
<td>Contact, droplet</td>
<td>Low</td>
<td>Use separate sinks for handwashing and disposal of contaminated fluids</td>
</tr>
<tr>
<td>Faucet aerators</td>
<td>Pseudomonas</td>
<td>Contact, droplet</td>
<td>Low</td>
<td>No precautions necessary at present</td>
</tr>
<tr>
<td>SHOWERS</td>
<td>Legionella</td>
<td>Inhalation</td>
<td>Low</td>
<td>Prohibit use in immunocompromised patients</td>
</tr>
<tr>
<td>Ice and ice machines</td>
<td>Legionella, Enterobacter, Pseudomonas, Salmonella, Cryptosporidia</td>
<td>Ingestion, contact</td>
<td>Moderate</td>
<td>Periodic cleaning; use automatic dispenser (i.e., avoid open chest storage compartments in patient areas)</td>
</tr>
<tr>
<td>Eyewash stations</td>
<td>Pseudomonas, Legionella, Ameba</td>
<td>Contact</td>
<td>Low</td>
<td>Have available sterile water for eye flush or weekly (or monthly) flush eyewash stations</td>
</tr>
<tr>
<td>Dental-unit water systems</td>
<td>Pseudomonas, Legionella, Sphingomonas, Acinetobacter</td>
<td>Contact</td>
<td>Low</td>
<td>Clean water systems</td>
</tr>
<tr>
<td>Dialysis water</td>
<td>Gram-negative bacilli</td>
<td>Contact</td>
<td>Moderate</td>
<td>Follow guidelines: dialysate \leq2,000 organisms/mL; water \leq200 organisms/mL</td>
</tr>
</tbody>
</table>
Water Wall Fountains and Electronic Faucets
Water Walls Linked to Legionnaires’

- Palmore et al. ICHE 2009;30:764
 - 2 immunocompromised patients exposed to decorative fountain in radiation oncology; isolates from patients and fountain identical; disinfection with ozone, filter and weekly cleaning

- Houpt et al. ICHE 2012;33:185
 - Lab-confirmed Legionnaires disease was dx in 8 patients; 6 had exposure to decorative fountain (near main entrance to hospital); high counts of *Legionella pneumophila* 1 despite disinfection and maintenance
Water Walls and Decorative Water Fountains

Present unacceptable risk in hospitals serving immunocompromised patients (even with standard maintenance and sanitizing methods)
Electronic Faucets
A Possible Source of Nosocomial Infection?
Electronic Faucets

- Conserve water
- Conserve energy
- Hygienic
- Hands free
- Barrier free
Electronic (E) vs Handle-Operated (HO) Faucets

- 100% E vs 30% HO *Legionella* (no cases). Halabi et al. JHI 2001:49:117
- Significant difference HPC levels between brand A (32%) and B (8%) E compared to HO (11%). Hargreaves et al. 2001; 22:202
- No difference in *P. aeruginosa*. Assadian et al. ICHE. 2002;23:44.
- 73% E samples did not meet German water standard vs 0% HO. Chaberny et al. ICHE 2004;25:997
- 39% of water samples from E and 1% from HO yielded *P. aeruginosa*. Merrer et al. Intensive Care Med 2005;31:1715
- 95% E grew *Legionella* compared to 45% HO (water-disruption events). Syndor et al. ICHE; 33:235
Issues Associated with Electronic Faucets

- A longer distance between the valve and the tap, resulting in a longer column of stagnant, warm water, which favors production of biofilms
- Reduced water flow; reduced flushing effect (growth favored)
- Valves and pipes made of plastic (enhances adhesion *P. aeruginosa*)
Prevention Measures

• Electronic faucets constructed so they do not promote the growth of microorganisms

• A potential source of nosocomial pathogens but more data are needed to establish role in HAI

• No guideline (but some have recommended) to remove electronic faucets from at-risk patient care areas (BMTU)

• Some have recommended periodic monitoring of water samples for growth of *Legionella*
Environmental Strategies to Reduce Infections

• Environmental Infection Control
 ■ Reprocessing reusable medical/surgical instruments
 ■ Hospital surfaces
 ■ Water

• Identify at least four ways infection prevention activities can reduce the contribution of the environment to HAIs
Environmental Strategies to Reduce Infections

• Identify at least four ways infection prevention activities can reduce the contribution of the environment to HAIs
 ■ Prohibit water walls/decorative fountains in hospitals serving immunocompromised patients
 ■ Monitor effectiveness of cleaning
 ■ Improve laryngoscope reprocessing
 ■ Improve endoscope reprocessing
 ■ Minimize surfaces as a reservoir for HA pathogens
CONCLUSIONS

• New sterilization, high-level disinfection and low-level disinfection technologies/practices/products are effective.

• The contaminated surface environment in hospital rooms is important in the transmission of healthcare-associated pathogens (MRSA, VRE, *C. difficile)*

• Effective surface disinfection essential to eliminate the environment as a source for transmission of HA pathogens.

• New methods of reducing transmission of these pathogens may include: improved room cleaning/disinfection, “no-touch” methods (UV, HP), and self-disinfecting surfaces.

• Water reservoirs of HA pathogens (e.g., water walls) may present unacceptable risk to high-risk patients.
THANK YOU!