Disinfection, Sterilization and Antisepsis: An Overview

William A. Rutala, Ph.D., M.P.H.
Director, Statewide Program for Infection Control and Epidemiology, Research Professor of Medicine, University of North Carolina (UNC)
Former Director, Hospital Epidemiology, Occupational Health and Safety Program, UNC Health Care, Chapel Hill (1979-2017)
DISCLOSURES
2017-2018

- Consultations
 - ASP (Advanced Sterilization Products), PDI
- Honoraria
 - PDI, Kennall
- Scientific Advisory Board
 - Kinnos
- Grants
 - CDC, CMS
Disinfection, Sterilization and Antisepsis

- Provide overview of disinfection, sterilization and antisepsis
 - Indications and methods for sterilization, high-level disinfection and low-level disinfection
 - Cleaning of patient-care devices
 - Sterilization
 - Disinfection (high-level and low-level disinfection)
 - Antisepsis
www.disinfectionandsterilization.org
Sources of Healthcare-Associated Pathogens

- **Endogenous flora (SSI, UTI, CLABSI):** 40-60%
- **Exogenous:** 20-40% (e.g., cross-infection via contaminated hands [staff, visitors])
- **Other (environment):** 20%
 - Medical devices
 - Contact with environmental surfaces (direct and indirect contact)
Guideline for Disinfection and Sterilization
in Healthcare Facilities, 2008

William A. Rutala, Ph.D., M.P.H.,1,2, David J. Weber, M.D., M.P.H.,1,2, and the Healthcare
Infection Control Practices Advisory Committee (HICPAC)3

1Hospital Epidemiology
University of North Carolina Health Care System
Chapel Hill, NC 27514

2Division of Infectious Diseases
University of North Carolina School of Medicine
Chapel Hill, NC 27599-7030
EH Spaulding believed that how an object will be disinfected depended on the object’s intended use (developed 1968).

CRITICAL—medical/surgical devices which enter normally sterile tissue or the vascular system or through which blood flows should be sterile.

SEMICRITICAL—medical devices that touch mucous membranes or skin that is not intact require a disinfection process (high-level disinfection [HLD]) that kills all microorganisms but high numbers of bacterial spores.

NONCRITICAL—medical devices that touch only intact skin require low-level disinfection.
Critical Medical/Surgical Devices

Rutala et al. ICHE 2014;35:883; Rutala et al. ICHE 2014;35:1068; Rutala et al. AJIC 2016;44:e47

- Critical
 - Transmission: direct contact
 - Control measure: sterilization
 - Surgical instruments
 - Enormous margin of safety, rare outbreaks (2 in 60 years)
 - ~85% of surgical instruments <100 microbes
 - Washer/disinfector removes or inactivates 10-100 million
 - Sterilization kills 1 trillion spores
Critical Objects

- Surgical instruments
- Cardiac catheters
- Implants
Efficacy of Disinfection/Sterilization

Influencing Factors

Cleaning of the object
Organic and inorganic load present
Type and level of microbial contamination
Concentration of and exposure time to disinfectant/sterilant
Nature of the object
Temperature and relative humidity
Penicylinders Sterilized by Various Low-Temperature Sterilization Methods

Alfa et al. Infect Cont Hosp Epidemiol 1996;17:92-100

<table>
<thead>
<tr>
<th>Challenge:</th>
<th>12/88</th>
<th>100%ETO</th>
<th>HCFC-ETO</th>
<th>HP Plasma</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% Serum, 0.65% Salt (7 organisms, N=63)</td>
<td>97%</td>
<td>60.3%</td>
<td>95.2%</td>
<td>37%</td>
</tr>
<tr>
<td>No Serum or Salt, (3 organisms, N=27)</td>
<td>100%</td>
<td>100%</td>
<td>96%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Cleaning

- Items must be cleaned using water with detergents or enzymatic cleaners before processing.
- Cleaning reduces the bioburden and removes foreign material (organic residue and inorganic salts) that interferes with the sterilization process.
- Cleaning and decontamination should be done as soon as possible after the items have been used as soiled materials become dried onto the instruments.
Cleaning

- **Mechanical** cleaning machines—automated equipment may increase productivity, improve cleaning effectiveness, and decrease worker exposure
 - Utensil washer-sanitizer
 - Ultrasonic cleaner
 - Washer sterilizer
 - Dishwasher
 - Washer disinfector
- **Manual**
Washer/Disinfector
Removal/Inactivation of Inoculum (Exposed) on Instruments

<table>
<thead>
<tr>
<th>WD Conditions</th>
<th>Organism</th>
<th>Inoculum</th>
<th>Log Reduction</th>
<th>Positives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routine</td>
<td>MRSA</td>
<td>2.6×10^7</td>
<td>Complete</td>
<td>0/8</td>
</tr>
<tr>
<td>Routine</td>
<td>VRE</td>
<td>2.6×10^7</td>
<td>Complete</td>
<td>0/8</td>
</tr>
<tr>
<td>Routine</td>
<td>P. aeruginosa</td>
<td>2.1×10^7</td>
<td>Complete</td>
<td>0/8</td>
</tr>
<tr>
<td>Routine</td>
<td>M. terrae</td>
<td>1.4×10^8</td>
<td>7.8</td>
<td>2/8</td>
</tr>
<tr>
<td>Routine</td>
<td>GS spores</td>
<td>5.3×10^6</td>
<td>4.8</td>
<td>11/14</td>
</tr>
<tr>
<td>No Enz/Det</td>
<td>VRE</td>
<td>2.5×10^7</td>
<td>Complete</td>
<td>0/10</td>
</tr>
<tr>
<td>No Enz/Det</td>
<td>GS spores</td>
<td>8.3×10^6</td>
<td>5.5</td>
<td>8/10</td>
</tr>
</tbody>
</table>
DON'T YOU EVER WASH YOUR WEAPONS BEFORE YOU USE THEM?

NO, WHY?

YOU COULD GIVE SOMEONE AN INFECTION
IS THERE A STANDARD TO DEFINE WHEN A DEVICE IS CLEAN?

- There is currently no universal standard to define when a device is “clean”, cleanliness controlled by visual
- Potential methods: level of detectable bacteria; protein (6µg/cm²); endotoxin; ATP; lipid; hemoglobin; carbohydrate; bilirubin; total organic carbon; cleaning indicators for washer disinfectors; boroscope
- This is due in part to the fact that no universally accepted test soils to evaluate cleaning efficiency and no standard procedure for measuring cleaning efficiency
- At a minimum, a cleaning process should: reduce the natural bioburden; remove organic/inorganic contaminants; provide devices that when sterilized have a SAL 10⁻⁶
Methods in Sterilization
Sterilization of “Critical Objects”

Steam sterilization
Hydrogen peroxide gas plasma
Ethylene oxide
Ozone and hydrogen peroxide
Vaporized hydrogen peroxide
Sterilization

Enormous Margin of Safety!

100 quadrillion (10^{17}) margin of safety

Sterilization kills 1 trillion spores, washer/disinfector removes or inactivates 10-100 million; ~100 microbes on surgical instruments
Sterilization Practices
Objectives of Monitoring the Sterilization Process

- Assures probability of absence of all living organisms on medical devices being processed
- Detect failures as soon as possible
- Removes medical device involved in failures before patient use
Sterilization monitored routinely by combination of mechanical, chemical, and biological parameters

- **Physical** - cycle time, temperature, pressure
- **Chemical** - heat or chemical sensitive inks that change color when germicidal-related parameters present
- **Biological** - *Bacillus* spores that directly measure sterilization
<table>
<thead>
<tr>
<th>Sterility Indicators Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before Exposure</td>
</tr>
<tr>
<td>(Do not use)</td>
</tr>
<tr>
<td>Steam Autoclave</td>
</tr>
<tr>
<td>Tape</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Strip</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Peel Pack</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ethylene Oxide (ETO. gas)</td>
</tr>
<tr>
<td>Tape</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Strip</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Peel Pack</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Tape</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Strip</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

6/23/97
Super Rapid Readout Biological Indicators
Commercially available

BI (blue cap)
• Monitors 270°F and 275°F gravity –displacement steam sterilization cycles
• 30 minute result (from 1 hour)

BI (brown cap)
• Monitors 270°F and 275°F dynamic-air-removal (pre-vacuum) steam sterilization cycles
• 1 hour result (from 3 hours)
Semicritical Medical Devices
Rutala et al. AJIC 2016;44:e47

- Semicritical
 - Transmission: direct contact
 - Control measure: high-level disinfection
 - Endoscopes top ECRI list of 10 technology hazards, >130 outbreaks (GI, bronchoscopes)
 - 0 margin of safety
 - Microbial load, 10^7-10^{10}
 - Complexity
 - Biofilm
 - Other semicritical devices, rare outbreaks
 - ENT scopes, endocavitary probes (prostate, vaginal, TEE), laryngoscopes, cystoscopes
 - Reduced microbial load, less complex
Semicritical Items

- Endoscopes
- Respiratory therapy equipment
- Anesthesia equipment
- Endocavitary probes
- Tonometers
- Laryngoscopes
High-Level Disinfection
No Margin of Safety

0 margin of safety

Microbial contamination 10^7-10^{10}: compliant with reprocessing guidelines 10,000 microbes after reprocessing:

maximum contamination, minimal cleaning (10^2)/HLD (10^4)
High-Level Disinfection of “Semicritical Objects”

Exposure Time ≥ 8m-45m (US), 20°C

<table>
<thead>
<tr>
<th>Germicide</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glutaraldehyde</td>
<td>≥ 2.0%</td>
</tr>
<tr>
<td>Ortho-phthalaldehyde</td>
<td>0.55%</td>
</tr>
<tr>
<td>Hydrogen peroxide*</td>
<td>7.5%</td>
</tr>
<tr>
<td>Hydrogen peroxide and peracetic acid*</td>
<td>1.0%/0.08%</td>
</tr>
<tr>
<td>Hydrogen peroxide and peracetic acid*</td>
<td>7.5%/0.23%</td>
</tr>
<tr>
<td>Hypochlorite (free chlorine)*</td>
<td>650-675 ppm</td>
</tr>
<tr>
<td>Accelerated hydrogen peroxide</td>
<td>2.0%</td>
</tr>
<tr>
<td>Peracetic acid</td>
<td>0.2%</td>
</tr>
<tr>
<td>Glut and isopropanol</td>
<td>3.4%/26%</td>
</tr>
<tr>
<td>Glut and phenol/phenate**</td>
<td>1.21%/1.93%</td>
</tr>
</tbody>
</table>

*May cause cosmetic and functional damage; **efficacy not verified*
Transmission of Infection by Endoscopy

<table>
<thead>
<tr>
<th>Scope</th>
<th>Outbreaks</th>
<th>Micro (primary)</th>
<th>Pts Contaminated</th>
<th>Pts Infected</th>
<th>Cause (primary)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper GI</td>
<td>19</td>
<td>Pa, H. pylori, Salmonella</td>
<td>169</td>
<td>56</td>
<td>Cleaning/Disinfection (C/D)</td>
</tr>
<tr>
<td>Sigmoid/Colonoscopy</td>
<td>5</td>
<td>Salmonella, HCV</td>
<td>14</td>
<td>6</td>
<td>Cleaning/Disinfection</td>
</tr>
<tr>
<td>ERCP</td>
<td>23</td>
<td>P. aeruginosa (Pa)</td>
<td>152</td>
<td>89</td>
<td>C/D, water bottle, AER</td>
</tr>
<tr>
<td>Bronchoscopy</td>
<td>51</td>
<td>Pa, Mtb, Mycobacteria</td>
<td>778</td>
<td>98</td>
<td>C/D, AER, water</td>
</tr>
<tr>
<td>Totals</td>
<td>98</td>
<td></td>
<td>1113</td>
<td>249</td>
<td></td>
</tr>
</tbody>
</table>

Based on outbreak data, if eliminated deficiencies associated with cleaning, disinfection, AER, contaminated water and drying would eliminate about 85% of the outbreaks.
Reason for Endoscope-Related Outbreaks

- Margin of safety with endoscope reprocessing minimal or non-existent
- Microbial load
 - GI endoscopes contain 10^{7-10}
 - Cleaning results in 2-6 log$_{10}$ reduction
 - High-level disinfection results in 4-6 log$_{10}$ reduction
 - Results in a total 6-12 log$_{10}$ reduction of microbes
 - Level of contamination after processing: $4\log_{10}$ (maximum contamination, minimal cleaning/HLD)
- Complexity of endoscope and endoscope reprocessing
- Biofilms-unclear if contribute to failure of endoscope reprocessing
Noncritical Medical Devices

- Noncritical medical devices
- Transmission: secondary transmission by contaminating hands/gloves via contact with the environment and transfer to patient
- Control measures: hand hygiene and low-level disinfection
- Noncritical devices (stethoscopes, blood pressure cuffs, wound vacuum), rare outbreaks
Effective Surface Decontamination

Product and Practice
Exposure time ≥ 1 min

<table>
<thead>
<tr>
<th>Germicide</th>
<th>Use Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethyl or isopropyl alcohol</td>
<td>70-90%</td>
</tr>
<tr>
<td>Chlorine</td>
<td>100ppm (1:500 dilution)</td>
</tr>
<tr>
<td>Phenolic</td>
<td>UD</td>
</tr>
<tr>
<td>Iodophor</td>
<td>UD</td>
</tr>
<tr>
<td>Quaternary ammonium (QUAT)</td>
<td>UD</td>
</tr>
<tr>
<td>QUAT with alcohol</td>
<td>RTU</td>
</tr>
<tr>
<td>Improved hydrogen peroxide (HP)</td>
<td>0.5%, 1.4%</td>
</tr>
<tr>
<td>Peracetic acid with HP (C. difficile)</td>
<td>UD</td>
</tr>
</tbody>
</table>

UD=Manufacturer’s recommended use dilution; others in development/testing-electrolyzed water; polymeric guanidine; cold-air atmospheric pressure plasma (Boyce Antimicrob Res IC 2016. 5:10)
Thoroughness of Environmental Cleaning

Carling P. AJIC 2013;41:S20-S25

Mean = 32%

>110,000 Objects

DAILY CLEANING
TERMINAL CLEANING
Implement evidence-based practices for surface disinfection
- Ensure use of safe and effective (against emerging pathogens such as C. auris and CRE) low-level disinfectants
- Ensure thoroughness of cleaning (new thoroughness technology)

Use “no touch” room decontamination technology proven to reduce microbial contamination on surfaces and reduction of HAIs at terminal/discharge cleaning

Use new continuous room decontamination technology that continuously reduces microbial contamination
“NO TOUCH” APPROACHES TO ROOM DECONTAMINATION

(UV/VHP~20 microbicidal studies, 12 HAI reduction studies; will not discuss technology with limited data)

Enhanced Disinfection Leading to Reduction of Microbial Contamination and a Decrease in Patient Col/Infection

All enhanced disinfection technologies were significantly superior to Quat alone in reducing EIPs. Comparing the best strategy with the worst strategy (i.e., Quat vs Quat/UV) revealed that a reduction of 94% in EIP (60.8 vs 3.4) led to a 35% decrease in colonization/infection (2.3% vs 1.5%). Our data demonstrated that a decrease in room contamination was associated with a decrease in patient colonization/infection. First study which quantitatively described the entire pathway whereby improved disinfection decreases microbial contamination which in-turn reduced patient colonization/infection.
Antisepsis
Antiseptic Agents
(used alone or in combination)

- Alcohols, 60-95%
- Chlorhexidine, 2% and 4% aqueous
- Iodophors
- PCMX
- Triclosan
Antiseptics

- Hand Hygiene-improvement and compliance monitoring
- Preoperative showers
- Preoperative skin preparation
- Surgical hand scrub
- Skin preparation prior to insertion of catheters
- Routine daily bathing of patients
Summary of Best Antiseptics

- **Preoperative showers** - CHG is preferred; significant impact on SSIs not proven
- **Preoperative skin preparation** - alcohol-containing products (with CHG or iodophor)
- **Surgical hand scrub** - alcohol-containing products reduce bacteria on hands best
- **Vascular access site preparation** - alcohol preparation containing >0.5% CHG
- **Routine daily bathing of patients** - CHG appear to be more effective than standard soap and water
Disinfection, Sterilization and Antisepsis

- Provide overview of disinfection, sterilization and antisepsis
 - Indications and methods for sterilization, high-level disinfection and low-level disinfection
 - Cleaning of patient-care devices
 - Sterilization
 - Disinfection (high-level and low-level disinfection)
 - Antisepsis
Summary

- D/S evidenced-based recommendations must be followed to prevent exposure to pathogens that may lead to infection
- Antiseptics must be used optimally to prevent infections that originate from the skin and patient contact
THANK YOU!

www.disinfectionandsterilization.org